GEOMETRY/TOPOLOGY QUALIFYING EXAM JANUARY 2018 # Please show all your work. GOOD LUCK! #### Problem 1 Find a conformal mapping from the strip $\{z : 0 < \text{Im} z < 1\}$ to the first quadrant $\{\zeta : \text{Re}\zeta > 0, \text{Im}\zeta > 0\}$ of the complex plane. ### Problem 2 Let X and Y be manifolds, and let $C_0^{\infty}(X)$ and $C_0^{\infty}(Y)$ be spaces of smooth, compactly supported functions on X and Y, respectively. Let $p: X \to Y$ be a smooth covering. For $f \in C_0^{\infty}(X)$, the function p_*f on Y is defined by the formula $$p_*f(y) = \sum_{x \in p^{-1}(y)} f(x).$$ Prove that p_* is a surjective map from $C_0^{\infty}(X)$ to $C_0^{\infty}(Y)$. ## Problem 3 Let $$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$ be a vector field in \mathbb{R}^2 . What condition a differential form $\omega = a(x,y)dx \wedge dy$ must satisfy for $\mathcal{L}_X\omega = 0$? Here \mathcal{L}_X is the Lie derivative. Suppose that a(x,y) is not identically equal to 0. Can it be smooth? Give an example of a smooth, non-zero two-form ω in $\mathbb{R}^2 \setminus \{0\}$ such that $\mathcal{L}_X\omega = 0$. #### Problem 4 Let $GL_+(2,\mathbb{R})$ be the space of all 2×2 matrices with real entries the determinant of which is positive. Compute $\pi_1(GL_+(2,\mathbb{R}))$. # Problem 5 Let a_1, \dots, a_k be k distinct points on the two-dimensional sphere S^2 , and let $X = S^2 \setminus \{a_1, \dots, a_k\}$. Compute singular homologies of X with integer coefficients. #### Problem 6 Compute $\pi_1(\mathbb{R}P^2 \times S^1)$. Here $\mathbb{R}P^2$ is the space of all lines passing through the origin in \mathbb{R}^3 , and S^1 is the unit circle in \mathbb{R}^2 . Typeset by A_MS -T_EX