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These notes are intended only as a rough summary of the background in linear algebra expected of 
incoming graduate students. With brevity as our guiding principle, we include virtually no proofs of the 
results stated in the text below. The reader is encouraged to fill in as many of the arguments and details as 
possible.

1. Lecture 1

Throughout these notes, we fix a field k.

1.1. First definitions and properties.

Definition 1.1.1. A vector space over k is a set V equipped with maps + : V × V → V (addition) and
· : k × V → V (scalar multiplication) which satisfy:

(1) The pair (V,+) forms an abelian group. That is:
(a) + is commutative: v + w = w + v for all v, w ∈ V .
(b) + is associative: u+ (v + w) = (u+ v) + w for all u, v, w ∈ V .
(c) There exists an additive identity 0 ∈ V such that 0 + v = v for all v ∈ V .
(d) There exist additive inverses: for all v ∈ V , there exists −v ∈ V such that v + (−v) = 0.

(2) Scalar multiplication gives an action of the group k× on V . That is:
(a) a · (b · v) = (ab) · v for all a, b ∈ k and all v ∈ V .
(b) 1 · v = v for all v ∈ V .

(3) Scalar multiplication distributes over addition. That is:
(a) a · (v + w) = a · v + a · w for all a ∈ k and all v, w ∈ V .
(b) (a+ b) · v = a · v + b · v for all a, b ∈ k and all v ∈ V .

As is customary, we write the scalar product a · v simply as av, we will not mention k when it is clear from
context, and we will call elements of the set V vectors.

Definition 1.1.2. Let V be a vector space over k. A subset W ⊆ V is called a subspace of V if W is also
a vector space over k under the addition and scalar multiplication on V .

Remark 1.1.3. It is easy to see that a subset W ⊆ V of a vector space V is a subspace if and only if:

(1) W is nonempty.
(2) W is closed under addition: u+ w ∈W for all u,w ∈W .
(3) W is closed under scalar multiplication: aw ∈W for all a ∈ k and all w ∈W .

Note that the subsets of a fixed vector space V are partially ordered with respect to inclusion.
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1.2. Constructions. We now discuss some fundamental constructions of new vector spaces and subspaces
from old ones.

Example 1.2.1. The following are fundamental examples:

(1) For any k, we have the zero vector space, 0, consisting of the single vector 0.
(2) k is a vector space over itself with respect to the canonical addition and multiplication.
(3) More generally, kn := {(a1, . . . , an) : ai ∈ k} is a vector space over k with respect to coordinate-wise

addition and scalar multiplication.
(4) For any vector space V , both V and 0 are subspaces of V .

Definition 1.2.2. Let V be a vector space over k and let {Wi}i∈I a collection of subspaces of V .

(1) The sum of the {Wi} is∑
i∈I

Wi := {
∑
i∈J

J⊆I finite

wi : wi ∈Wi for all i}.

It is a subspace of V , and is the smallest subspace of V containing Wi for all i.
(2) The intersection of the {Wi} is the set⋂

i∈I
Wi := {v ∈ V : v ∈Wi for all i}.

It is a subspace of V , and is the largest subspace of V contained in Wi for all i.

Definition 1.2.3. Let I be an index set and {Vi}i∈I a collection of vector spaces over k.

(1) The direct product of the Vi is the cartesian product∏
i∈I

Vi := {(vi) : vi ∈ Vi}

with coordinate-wise addition and scalar multiplication.
(2) The direct sum of the Vi is⊕

i∈I
Vi := {(vi) ∈

∏
i∈I

Vi : vi = 0 for all but finitely many i}

with coordinate-wise addition and scalar multiplication.

These are both vector spaces over k, and
⊕
Vi is a subspace of

∏
Vi with equality if and only if I is a finite

set or Vi = 0 for all but finitely many i.

Definition 1.2.4. Let V be a vector space over k and W a subspace of V . The quotient of V by W ,
written V/W , is the vector space whose underlying set is the set {v +W : v ∈ V } of (left) cosets of W in
V , with addition and scalar multiplication given by

(u+W ) + (v +W ) := (u+ v) +W respectively a · (v +W ) := av +W.

One checks that this really is a vector space over k.

1.3. Span and linear independence, bases and dimension.

Definition 1.3.1. Let V be a vector space over k.

(1) Let v ∈ V be any vector. The span of v is the subsace k · v := {av : a ∈ k} of all k-multiples of v.
(2) Let S ⊆ V be any subset of V . The span of S is the subspace of V

span(S) :=
∑
v∈S

k · v
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Definition 1.3.2. Let V be a vector space over k.

(1) Let v1, . . . , vn ∈ V be arbitrary. We say that v1, v2, . . . , vn are linearly independent if the only
solution to the equation ∑

aivi = 0

is a1 = a2 = · · · = an = 0.
(2) Let S ⊆ V be any subset of V . We say that S is a linearly independent set of vectors if every

finite subset of S is linearly independent. Otherwise we say that S is lineraly dependent.

Definition 1.3.3. Let V be a vector space over k and S a subset of V . We say that S is a basis of V
provided:

(1) S spans V , i.e. span(S) = V .
(2) S is linearly independent.

Theorem 1.3.4. The following facts are fundamental:

(1) Every vector space over k has a basis (requires the axiom of choice in general).
(2) Any two bases of a given vector space have the same cardinality.
(3) Any maximal (with respect to inclusion) linearly independent subset of V is a basis.
(4) Any minimal (with respect to inclusion) spanning subset of V is a basis.

Example 1.3.5. The standard basis of kn :=
⊕n

i=1 k is the basis {ei}ni=1 with ei := (0, . . . , 0, 1, 0, . . . , 0) the
vector whose entries are all 0 except for a 1 in the i th position. Using this, it is easy to see that a choice of
basis S of a vector space V is equivalent to an isomorphism

⊕
s∈S k ' V .

Definition 1.3.6. Let V be a vector space over k and S a basis of V . The dimension of V is the cardinality
of S, i.e.: dimk(V ) := #S.

Remark 1.3.7. As with every definition in these notes, it is possible to give an intrinsic definition of dim(V );
i.e. one that does not use bases. It is not, however, possible to avoid the axiom of choice in showing that
dimension is well defined in general (one ends up needing the existence of maximal chains of subspaces).

Technique 1.3.8 (Coordinates). If V is a vector space over k and S is a basis of V , then every nonzero
v ∈ V can be written as an unique linear combination of elements of S. That is, v determines a unique tuple
{as}s∈S ∈ kS such that as = 0 for all but finitely many s ∈ S and v =

∑
s∈S ass. Note that this sum makes

sense, as only finitely many of its summands are nonzero. We say that {as}s∈S are the coordinates of v
with respect to the basis S.

1.4. Linear maps.

Definition 1.4.1. Let V and W be vector spaces over k.

(1) A linear map or a linear transformation is a map of sets T : V → W which respects addition
and scalar multiplication:
(a) T (u+ v) = T (u) + T (v) for all u, v ∈ V .
(b) T (av) = aT (v) for all v ∈ V and all a ∈ k.

(2) Let T : V →W be a linear map.
(a) The kernel of T is

ker(T ) := {v ∈ V : T (v) = 0}.
It is a subspace of V .

(b) The image of T is

im(T ) := {w ∈W : w = T (v) for some v ∈ V }.
It is a subspace of W .
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Definition 1.4.2. Let V and W be vector spaces over k. We define

Hom(V,W ) := {linear maps T : V →W}.
This set is naturally a vector space over k with addition with addition (S + T )(v) := S(v) + T (v) and
scalar multiplication (aT )(v) := aT (v). In the special case that W = k, we obtain the dual of V given by
V ∗ := Hom(V, k). If S is a basis of V , and s ∈ S, the dual functional s∗ : V → k is the unique k-linear
map with s∗(t) = δst for t ∈ S where δ is the Dirac delta function. The set S∗ := {s∗ : s ∈ S} is a
linearly independent subset of V ∗ which need not be a basis of V ∗; when it is a basis (e.g. when V has finite
dimension) it is called the dual basis.

Theorem 1.4.3. Let V be a vector space over k. Then there is a canonical linear map

(1.4.1) V → V ∗∗ given by v 7→ (f 7→ f(v))

which is injective. When V has finite dimension n, then V ∗ also has dimension n, and the map (1.4.1) is a
canonical isomorphism of V with V ∗∗.

Definition 1.4.4. Let T : V →W be a linear map of vector spaces over k.

(1) The rank of T is rk(T ) := dimk im(T ).
(2) The nullity of T is null(T ) := dimk ker(T ).

Theorem 1.4.5. Let V and W be vector spaces over k and T : V →W a linear map. There is a canonical
isomorphism of k-vector spaces

V/ ker(T ) ' im(T ).

In particular, if V and W are finite dimensional then

rk(T ) + null(T ) = dim(V )

Technique 1.4.6 (Matrix of a linear map). Let V and W be vector spaces over k of finite dimension and
T : V →W a linear transformation. Let v := {v1, . . . , vn} and w := {w1, . . . , wm} be bases of V and of W ,
respectively. By Technique 1.3.8, there are unique aij ∈ k such that

T (vj) =

m∑
i=1

aijwi for 1 ≤ j ≤ n.

The matrix of T with respect to the bases v, w is the m × n matrix w[T ]v := (aij). If v ∈ V has
coordinates (b1, . . . , bn) with respect to the basis v, then the coordinates of T (v) with respect to w are given
by the matrix product

(1.4.2)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



b1
b2
...
bn


Conversely, if M is an arbitrary m × n-matrix, then M may be viewed as the linear transformation M :
kn → km whose associated matrix in the standard bases on source and target is M . In other words, choosing
bases for V and W gives a bijection

Hom(V,W ) ' Matm×n(k).

We will frequently utilize this perspective, and treat m× n matrices as linear transformations kn → km.

Remark 1.4.7. The set Matm×n(k) is a k-vector space via addition and scalar multiplication of matrices.
The bijection Hom(V,W ) ' Matm×n(k) is readily checked to respect the natural vector space structure on
both sides. In particular, Hom(V,W ) has dimension dim(V ) · dim(W ).
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Technique 1.4.8 (Change of basis). As a special case of Technique 1.4.6, we have the following. Let V be
a finite-dimensional vector space over k with fixed basis e = {ei}ni=1. Let v = {vi}ni=1be another basis of V .
The change of basis matrix from e to v is the n× n matrix A = (aij) := v[idV ]e.

(1) It follows easily from definitions that if B := e[idV ]v is the change of basis matrix from v to e then

AB = BA = idn,

with idn the n× n identity matrix. In particular, A is invertible and B = A−1.
(2) If v ∈ V has coordinates (b1, . . . , bn) with respect to e, then the coordinates of v with respect to v

are given by the matrix product as in (1.4.2).
(3) Let W be another finite dimensional vector space with fixed basis f = {fi}mi=1. Let w = {wi}mi=1 be

another basis of W and let T : V →W be a linear transformation. If A := v[idV ]e and B := w[idW ]f
are the change of basis matrices, then the equality of matrices

w[T ]v = B(f [T ]e)A−1

holds.

1.5. Systems of equations and Gaussian elimination.

Technique 1.5.1 (Elementary row and column operations). Let M be any m× n matrix over k.

(1) The following operations on M are called elementary row operations
(a) Swap rows i and j: Ri ↔ Rj .
(b) Multiply row i by a nonzero scalar: Ri → aRi.
(c) Add any scalar multiple of row j to row i: Ri → Ri + aRj .

If E is any one of these operations (so that E(M) is the matrix obtained from M by performing the
row operation E to M), then a little thought with change of basis matrices (or with explicit matrix
multiplication) shows that the matrix equation

E(M) = E(idm)M

holds. It is clear that each of these operations can be undone by an operation of the same type, so
that E(idm) is an invertible matrix. In particular, any (finite) succession of elementary row
operations corresponds to left multiplication by an invertible matrix. In fact, the converse
is true as well.

(2) The following operations on M are called elementary column operations
(a) Swap columns i and j: Ci ↔ Cj .
(b) Multiply column i by a nonzero scalar: Ci → aCi.
(c) Add any scalar multiple of column j to column i: Ci → Ci + aCj .

If E is any one of these operations then as above one has the matrix equation

E(M) = ME(idn)

holds. In particular, any (finite) succession of elementary column operations corresponds
to right multiplication by an invertible matrix, and the converse holds as well.

Technique 1.5.2 (Gaussian Elimination). We say that a matrix M is in row-echelon form prvovided the
following hold:

• All nonzero rows are above any row with all zero entries.
• The leading coefficient (or pivot) of any row (i.e. the first nonzero entry) is to the left of the

pivot in every row beneath it.

We say that M is in reduced row-echelon form if, in addition, we have:

• Every pivot of M is equal to 1 and all entries above (and below) any pivot are equal to 0.
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Let M = (aij) be an m×n matrix with entries in k. The following procedure (called Gaussian Elimination)
uses only elementary row operations to bring M to reduced row-echelon form:

(1) Find the first column of M (say column j) containing a nonzero entry in some row (row i).
(2) Swap row i and row 1.
(3) Multiply row 1 by 1/aij . The first nonzero entry in this row is now 1.
(4) Subtract the appropriate multiple of row 1 from every row below it to obtain all zeroes in column j

below the first row.
(5) While m > 1, repeat the above procedure with M replaced by the (m − 1) × n submatrix of M

obtained from deleting the first row and m replaced by m− 1.
(6) For each pivot of the new matrix, subtract the appropriate multiple of the row containing that pivot

from all rows above it so that the pivot is the only nonzero entry in its column.

There is of course a variant of Gaussian elimination for columns; we leave this to the reader to work out
as an exercise.

Technique 1.5.3. Let T : V →W be a linear transformation of finite dimensional vector spaces and let v
and w be bases of V and W , respectively. Set M := w[T ]v. It follows from Technique 1.5.1 that:

(1) Any elementary row operation on M is equivalent to left multiplying M by a change of basis matrix
on V . In particular, elementary row operations do not change ker(T ).

(2) Any elementary column operation on M is equivalent to right multiplying M by a change of basis
matrix on W . In particular, elementary column operations do not change im(T ).

In particular, if M ′ is the reduced row-echelon form of M , then ker(M) = ker(M ′) and we conclude that
the nullity of M is the number of zero-rows of M ′. Thanks to Theorem 1.4.5, the rank of M is the
number of leading entries of M ′ (all of which are 1).

Technique 1.5.4 (Solving systems of linear equations). A system of m linear equations in n unknowns
is any collection of equations

(1.5.1)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

... · · ·
...

am1x1 + am2x2+ · · ·+ amnxn= bm

in which the aij and bi are fixed scalars and the xj are unknowns. A solution of (1.5.1) is any vec-
tor (x1, . . . , xn) ∈ kn satisfying every one of these equations. Let A = (aij) ∈ Matm×n(k) and let
b := (b1, . . . , bn) ∈ kn and x := (x1, . . . , xn), viewed as column vectors. Then the system (1.5.1) is equivalent
to the matrix equation Ax = b. This may be solved by forming the augmented matrix

M :=


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

... · · ·
...

...
am1 am2 · · · amn bm


and applying Gaussian elimination to bring it to reduced row-echelon form. The resulting augmented matrix
corresponds to an equivalent system of equations whose solutions are easily determined inductively, starting
with the equation corresponding to the bottom row and proceeding upwards via “back-substitution”. In the
special case where b = 0, this allows us to determine a basis of ker(A) for any m× n matrix A.
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2. Lecture 2

In this section, we assume that k is algebraically closed, as it simplifies our treatment of eigenvalues.

2.1. Determinants and characteristic polynomial.

Definition 2.1.1. Let n be a positive integer.A determinant function is a map D : Matn×n(k) → k
satisfying

(1) D is multilinear. That is, for each i with 1 ≤ i ≤ n, the function D is a linear map on the i-th row
when the other n− 1 rows are fixed.

(2) D(A) = 0 whenever A has two equal rows.
(3) D(idn) = 1.

Theorem 2.1.2. For any positive integer n, a determinant function exists and is unique. It is given by

(2.1.1) det((aij)) :=
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i)

Here, the sum is over all permutations σ of the set {1, 2, . . . , n} and sgn(σ) is the sign of σ.1 In addition to
the characterizing properties listed above, det satisfies:

(1) det(AB) = det(A) det(B).
(2) det(A) = det(At), where At is the transpose of A.
(3) A is an invertible matrix if and only if det(A) ∈ k×.
(4) If A,B ∈ Matn×n(k) with A invertible, then det(ABA−1) = det(B).

Technique 2.1.3. There are a number of useful computational techniques for computing determinants,
the most common of which is Laplace’s Formula. Let A = (aij) be an n × n matrix and define Mij to be
the (i, j)-minor of A, i.e. the determinant of the (n − 1) × (n − 1) submatrix of A obtained by deleting
the i-th row and j-th column. By definition, the (i, j)-cofactor of A is (−1)i+jMij . Then for any fixed i
(respectively j) one has

det(A) =
n∑
j=1

(−1)i+jaijMij respectively det(A) =
n∑
i=1

(−1)i+jaijMij

These formulae allow one to inductively compute the determinant of any square matrix.

Theorem-Definition 2.1.4. Let V be a finite dimensional vector space over k and T : V → V a linear map.
For each basis e of V , the number det(e[T ]e) is independent of e; we call this number the determinant of
T and denote it det(T ).

Remark 2.1.5. There is of course an intrinsic way to define the determinant of a linear map which avoids
the crutch of bases and matrices. This method involves exterior algebra, which we do not discuss in these
notes. However, we highly encourage the reader to study tensor and wedge products. In what follows, we
will phrase things in terms of linear maps; the corresponding definitions and theorems for matrices follow
immediately from the discussion in Technique 1.4.6.

In what follows, we fix an n-dimensional vector space V and a linear map T : V → V .

1One possible definition is that sgn(σ) is (−1)d(σ), where d(σ) is the number of transpositions in (any) product decomposition
of σ into transpositions.
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Definition 2.1.6. The characteristic polynomial of T is

charT (x) := det(T − x · id).

Using the definition (2.1.1) of the determinant and its basic properties, it is easy to see that the following
hold:

(1) charT (x) is a monic degree n polynomial in x with coefficients in k.
(2) The constant term of charT (x) is (−1)n det(T ).

Theorem 2.1.7 (Cayley–Hamilton). Every linear map satisfies its characteristic polynomial: charT (T ) = 0.

It follows from the Cayley–Hamilton Theorem that there exists a polynomial (of degree n, in fact) satisfied
by T , and hence that the set of all monic polynomials satisfied by T is nonempty. The well-ordering principle
(using the degree of a polynomial) then guarantees the existence of a monic polynomial of least degree
satisfied by T . Using the fact that k[x] is a principal ideal domain and monicity, one shows that any two
such polynomials are equal:

Definition 2.1.8. The minimal polynomial of T , written minT (x), is the monic polynomial of least
degree satisfied by T .

Theorem 2.1.9. Let p(x) ∈ k[x] be any polynomial with p(T ) = 0. Then minT divides p. In particular,
minT divides charT . Furthermore, charT divides some power of minT ; in other words, the roots of charT are
precisely the roots of minT (although the multiplicities may be different).

2.2. Eigenvalues and eigenvectors.

Definition 2.2.1. A scalar λ ∈ k is said to be an eigenvalue of T if there exists a nonzero vector v ∈ V
such that

(2.2.1) Tv = λv. or equivalently (T − λ)v = 0

Any nonzero vector v satisfying (2.2.1) is called an eigenvector of T corresponding to λ. For an
eigenvector λ, the associated eigenspace is the subspace Vλ of V consisting of all vectors satisfying (2.2.1).
A generalized eigenvector corresponding to λ is any v ∈ V satisfying

(2.2.2) (T − λ)jv = 0 for some j > 0.

For an eigenvalue λ of T , the associated generalized eigenspace is the set Uλ of all v ∈ V which satisfy
(2.2.2). It is easy to see that Uλ is a subspace of V . The geometric multiplicity mgeom(λ) of an eigenvalue
λ of T is by definition dim(Vλ). The algebraic multiplicity malg(λ) of an eigenvalue λ is its multiplicity
as a root of charT (x). We define eigenvalues, (generalized) eigenvectors, and eigenspaces of n × n matrices
to be the corresponding objects of the associated linear maps on kn.

Theorem 2.2.2. Let V and T be as above.

(1) The eigenvalues of T are precisely the roots of charT (x) (equivalently minT (x)).
(2) mgeom(λ) = dim(Vλ) ≤ dimk(Uλ) = malg(λ) with equality for all λ if and only if T is diagonalizable.2

(3) Each Uλ is stable under T ; i.e. the restriction T
∣∣
Uλ

of T to Uλ has image in Uλ.

(4) If λ 6= λ′ are distinct eigenvalues of T then Uλ ∩ Uλ′ = 0.
(5) Let λ1, . . . , λr be the distinct eigenvalues of T . The inclusion mapping

∑r
i=1 Uλi → V induces an

isomorphism
r⊕
i=1

Uλi ' V

2See Technique 2.2.5.
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Technique 2.2.3 (Finding eigenvalues and vectors). Let M ∈ Matn×n(k). To find the eigenvalues of M ,
we simply find all roots of charM (x). For each eigenvalue λ, we can then determine a basis of the space of
eigenvectors with eigenvalue λ by using Technique 1.5.4 to find a basis of ker(M − λ · idn).

Definition 2.2.4. We say that T is:

(1) nilpotent if T s = 0 for some positive integer s, or equivalently:
(a) In Theorem 2.2.2 (5) we have r = 1 and λ1 = 0.
(b) minT and charT are both powers of x.

(2) semisimple if any T -stable subspace W ⊆ V admits a T -stable complement, or equivalently
(a) minT is square-free.
(b) V admits a basis of eigenvectors.
(c) Every generalized eigenvector is an eigenvector.
(d) There exists a basis of V in which the matrix of T is diagonal.

Technique 2.2.5 (Diagonalizing). Let M ∈ Matn×n(k). We describe an algorithm to determine whether
or not M is diagonalizable, and when it is, to find a matrix P with P−1MP a diagonal matrix.

(1) Compute charM (x).
(2) For each root λ of charM (x), use Technique 1.5.4 to determine a basis Bλ of Vλ = ker(M − λ · idn).
(3) If

∑
λ #Bλ < n, then M is not diagonalizable.

(4) Otherwise, let B =
⋃
λBλ; it is a basis of kn consisting of eigenvectors of M . Let P be the n × n

matrix whose columns are the elements of B; it is an invertible matrix satisfying

P−1MP = D

where D is a diagonal matrix whose diagonal entries are the eigenvalues of M (with multiplicity).

2.3. Jordan canonical form.

Definition 2.3.1. The Jordan block of size s associated to λ ∈ k is the s× s matrix

Jλ,s :=


λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
...

0 · · · λ


with λ’s on the diagonal, 1’s on the super-diagonal, and 0’s elsewhere.

By studying the nilpotent operators (T − λ)
∣∣
Uλ

, one proves:

Theorem 2.3.2 (Jordan Canonical Form). Let T : V → V be a linear map on an n-dimensional vector
space. There exists a basis of V with respect to which the matrix of T is in the block diagonal form (called
Jordan form)

(2.3.1)


Jλ1,s1

Jλ2,s2
. . .

Jλt,st


Here, λ1, . . . , λt are (not necessarily distinct) eigenvalues of T . For any eigenvalue λ, the dimension of Uλ
is equal to the sum of the sizes all Jordan blocks above that are associated to λ. The Jordan form of T is
uniquely determined by T , up to permutations of the Jordan blocks. Said differently, there exists an invertible
matrix P ∈ Matn×n(k) such that PMP−1 is equal to a matrix of the form (2.3.1).
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Theorem 2.3.3 (Abstract Jordan form). Let T : V → V be a linear map on a finite dimensional vector
space. Then T can be written as a sum T = S + N with S : V → V semisimple and N : V → V nilpotent,
with SN = NS.

Technique 2.3.4 (Computing Jordan form). Let M ∈ Matn×n(k). To find the Jordan form of M , we
proceed as follows:

(1) Compute charM (x).
(2) Determine all distinct roots {λ1, . . . , λr} of charM (x) and their algebraic multiplicities {m1, . . . ,mr}.
(3) For each i, compute nj := null((M − λi · idn)j) for 1 ≤ j ≤ mi/2 using Gaussian elimination.
(4) For each partition p := (a1, . . . , av) of mi into nonnegative integers, and each j above, compute

zj :=
∑

i: ai≥j
j +

∑
i: ai<j

ai.

(5) For each i, there will be an unique partition (a1, . . . , av) with nj = zj for all j. The Jordan blocks
in the Jordan form of M corresponding to λi are then Jλi,a` for 1 ≤ ` ≤ v.

Remark 2.3.5. For each distinct eigen value λi of M , let si be the size of the largest Jordan block associated
to λi. Then

∑
si is equal to the degree of minM . This fact is often useful in speeding up the computation

of the Jordan form of M .

Remark 2.3.6. Using the structure theory of modules over the PID k[x] gives an immediate proof of the
existence and uniqueness of Jordan canonical form. It also gives (via Smith normal form) an alternative
algorithm for computing the Jordan canonical form of a matrix.

3. Lecture 3

3.1. Bilinear forms.

Definition 3.1.1. Let V be a vector space over k. A bilinear form on V is a map f : V ×V → k satisfying

(1) f(au+ v, w) = af(u,w) + f(v, w)
(2) f(u, av + w) = af(u, v) + f(u,w)

for all u, v, w ∈ V and any a ∈ k. That is, f is a linear map in each argument when the other argument is
held fixed. We will sometimes write 〈u, v〉 for f(u, v) if f is clear from context. We denote by Bilin(V, V )
the set of all bilinear forms on V .

It is easy to see that any scalar multiple of a bilinear form or any sum of two bilinear forms is again a
bilinear form. This gives Bilin(V, V ) the structure of a vector space over k. Moreover, any bilinear form f
on V gives rise to two canonical linear maps

Lf : V → V ∗ given by Lf (v)(w) := f(v, w)

Rf : V → V ∗ given by Rf (v)(w) := f(w, v)

Definition 3.1.2. Let f : V × V → k be a bilinear form. We say that f is:

(1) Left (respectively right) nondegenerate if Lf (respectively Rf ) is injective.
(2) Nondegenerate if it is both left and right nondegenerate.
(3) Symmetric if f(u, v) = f(v, u) for all u, v ∈ V (equivalently Lf = Rf ).
(4) Skew symmetric if f(u, v) = −f(v, u) for all u, v ∈ V (equivalently Lf = −Rf ).
(5) Alternating if f(v, v) = 0 for all v ∈ V .
(6) Reflexive if f(u, v) = 0 ⇐⇒ f(v, u) = 0 for all u, v ∈ V .
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Remark 3.1.3. Every alternating form f satisfies f(u, v) = −f(v, u) and hence is skew-symmetric. If
char(k) 6= 2 then the converse holds and every skew-symmetric form is alternating. In characteristic 2, the
notions of skew-symmetric and symmetric coincide, and there are alternating forms which are not (skew-)
symmetric.

Theorem 3.1.4. Let f : V ×V → V be a bilinear form. If char(k) 6= 2 then there exist unique bilinear forms
f± on V with f+ symmetric and f− alternating (equivalently skew-symmetric) such that f = f+ + f−.

It is easy to see that any alternating or symmetric bilinear form is reflexive. In fact, the converse holds:

Theorem 3.1.5. A reflexive bilinear form on a vector space V is either symmetric or alternating.

Definition 3.1.6. Let f be a reflexive (i.e. symmetric or alternating) bilinear form on a vector space V .

(1) We say that u, v ∈ V are orthogonal with respect to f if f(u, v) = 0. Thanks to the reflexivity
of f , orthogonality is a symmetric condition; i.e. u and v ore orthogonal if and only if v and u are
orthogonal.

(2) A vector v ∈ V is isotropic with respect to f if f(v, v) = 0.
(3) A vector v ∈ V is anisotropic with respect to f if f(v, v) 6= 0.
(4) If W ⊆ V is a subspace of V , we define the orthogonal complement of W in V to be

W⊥ := {v ∈ V : f(v, w) = 0 for all w ∈W}.
(5) The radical of a subspace W ⊆ V with respect to f is

rad(W ) := W ∩W⊥.
(6) A subspace W ⊆ V is

(a) Isotropic with respect to f if rad(W ) = W .
(b) Coisotropic with respect to f if rad(W ) = W⊥.
(c) Lagrangian with respect to f if it is isotropic and coisotropic, or equivalently if W = W⊥.
(d) Nondegenerate with respect to f if rad(W ) = 0.

Theorem 3.1.7. Let f be a reflexive bilinear form on a vector space V and W ⊆ V a nondegenerate subspace
of V . Then V = W ⊕W⊥.

Definition 3.1.8 (Quadratic form associated to a symmetric bilinear form). Let f be a symmetric bilinear
form on a vector space V . The quadratic form associated to f is the map

q := qf : V → k given by qf (v) = f(v, v).

If char(k) 6= 2 then qf determines f via the identity

f(u, v) =
1

2
(qf (u+ v)− qf (u)− qf (v))

Technique 3.1.9 (Matrix of a bilinear form). Let V be a vector space over k of dimension n and f a bilinear
form on V . If e = {e1, . . . , en} is any basis of V , then the matrix of f with respect to e is the matrix
[f ]e := (f(ei, ej)).

Since f is bilinear, the matrix [f ]e determines f . More precisely, if u, v ∈ V have coordinates X :=
(u1, . . . , un) and Y := (v1, . . . , vn) with respect to e, then one checks that we have

f(u, v) = X[f ]eY
t.

In fact, for any basis e of V , the resulting map of sets

Bilin(V, V )→ Matn×n(k) given by f 7→ [f ]e

is an isomorphism of vector spaces over k.
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Technique 3.1.10 (Change of basis for a bilinear form). Let V be an n-dimensional vector space over k
and f a bilinear form on V . Let e and e′ be two bases of V and denote by P := e[idV ]e′ the change of basis
matrix from e-coordinates to e′-coordinates. Then

[f ]e′ = P t[f ]eP

Let V be a finite dimensional vector space and f a bilinear form on V . The map Lf : V → V ∗ induces,
by pullback, a linear mapping

(3.1.1) V ∗∗ → V ∗ given by θ 7→ θ ◦ Lf .
On the other hand, as V is of finite dimension we have a canonical isomorphism V ' V ∗∗ given as in Theorem
dualisom. We thus obtain a map

L∗f : V ' V ∗∗ (3.1.1)−−−−→ V ∗

Theorem 3.1.11. Let V and f be as above. Then L∗f = Rf . In particular, rk(Rf ) = rk(Lf ).

Definition 3.1.12. Let f be a bilinear form on a finite dimensional vector space V . The rank of f is the
number rk(f) := rk(Rf ) = rk(Lf ).

Corollary 3.1.13. Let f be a bilinear form on an n-dimensional vector space V . The following are equiv-
alent:

(1) f is left nondegenerate.
(2) Lf : V → V ∗ is an isomorphism.
(3) f is right nondegenerate.
(4) Rr : V → V ∗ is an isomorphism.
(5) f is nondegenerate.
(6) rk(f) = n
(7) The matrix [f ]e of f in any basis e has rank n.

3.2. The cases k = R and k = C. In the special case that k = R (the real numbers) or k = C (complex
numbers), we may use the ordering on R combined with the absolute value on C to further develop the
theory of pairings on vector spaces. We begin with a slight variant on the notion of symmetric bilinear form
which is adapted to the case when the base field is C.

Definition 3.2.1. Let V be a vector space over C. An Hermitian form on V is a map f : V × V → V
satisfying

(1) f(au+ v, w) = af(u,w) + f(v, w)

(2) f(u, v) = f(v, u)

for all u, v, w ∈ V and all a ∈ C. These conditions force

(3) f(v, au+ w) = af(v, u) + f(v, w)
(4) f(v, v) ∈ R

for all u, v, w ∈ V and a ∈ C.

Technique 3.2.2 (Matrix of an Hermitian form). Let V be a vector space over C of dimension n and f
an Hermitian form on V . If e = {e1, . . . , en} is any basis of V , then the matrix of f with respect to e
is the matrix [f ]e := (f(ei, ej)). If u, v ∈ V have coordinates X := (u1, . . . , un) and Y := (v1, . . . , vn) with
respect to e, then one checks that we have

f(u, v) = X[f ]eY
t
.

We have the following general structure theorem:
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Theorem 3.2.3. Let V be a finite dimensional vector space over k.

(1) If k has characteristic zero and f is a symmetric bilinear form on V of rank r then there exists a
basis of V with respect to which the matrix of f is diagonal, with exactly r nonzero (diagonal) entries.

(2) If k = R and f is a symmetric bilinear form on V of rank r then there exists a basis e of V with
respect to which the matrix of f is diagonal, with diagonal entries

f(ei, ei) = ±1 for 1 ≤ i ≤ r and f(ei, ei) = 0 for r < i ≤ n.

Furthermore, the number of −1’s on the diagonal depends only on f , and not on any choice of basis.
(3) If k = C and f is an Hermitian form on V then then there exists a basis e of V with respect to

which the matrix of f is diagonal, with all diagonal entries equal to 1 or 0.

Remark 3.2.4. The result of Theorem 3.2.3 (2) allows us to define the signature of a symmetric bilinear
form on a vector space V over the real numbers as the triple (r−, r+, s) where r− (respectively r+) is the
number of −1’s (respectively +1’s) on the diagonal and s is the number of zeroes. Clearly r = r− + r+ and
r + s = dim(V ). The signature of a bilinear form depends only on the form.

The method of proof of Theorem 3.2.3 is interesting and important. Rather than prove the theorem,
however, we discuss the Gram-Schmidt algorithm, which gives a constructive proof in a special case. It is
straightforward to adapt these ideas to the general case.

Definition 3.2.5. Let V be a vector space over R or C. An inner product on V is a map 〈, 〉 : V ×V → C
satisfying

(1) 〈v, v〉 lies in R and is nonnegative.
(2) 〈v, v〉 = 0 if and only if v = 0.
(3) 〈au+ v, w〉 = a〈u,w〉+ 〈v, w〉.
(4) 〈u, v〉 = 〈v, u〉.

for all u, v, w ∈ V and any a ∈ k. The first two conditions are called positivity and definiteness,
respectively. Note that when the base field is R, an inner product is the same as a positive definite symmetric
bilinear form (automatically nondegenerate), and when the base field is C, an inner product is a positive

definite Hermitian form. We define the norm of a vector v ∈ V to be ||v|| :=
√
〈v, v〉; the square root makes

sense due to positivity. An inner product space is a vector space V equipped with an inner product.

Technique 3.2.6 (Gram-Schmidt). Let V be an n-dimensional inner product space (over R or C) and let
{v1, . . . , vn} be a basis of V . We will construct an orthogonal basis of V , i.e. a basis {u1, . . . , un} with
〈ui, uj〉 nonzero if and only if i = j. It is clear that in this basis, the matrix of 〈, 〉 is diagonal.

We inductively define

u1 := v1

u2 := v2 −
〈v2, u1〉
〈u1, u1〉

u1

...

un := vn −
〈vn, u1〉
〈u1, u1〉

u1 −
〈vn, u2〉
〈u2, u2〉

u2 − · · · −
〈vn, un−1〉
〈un−1, un−1〉

un−1

As the vi may be recovered from the ui, we see that {ui} is a basis of V , and one easily checks that it is an
orthogonal basis. Given an orthogonal basis {ui} of V , we can construct an orthonormal basis of V , i.e.
a basis {wi} satisfying 〈wi, wj〉 = δij by setting wi := 1

||ui||ui.
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3.3. Operators on inner product spaces. Let V be a finite dimensional inner product space. The inner
product on V gives a map

(3.3.1) V → V ∗ via v 7→ 〈·, v〉,
which is injective (see Corollary 3.1.13) as any inner product is nondegenerate. It follows that (3.3.1) is an
isomorphism, though be warned that when the base field is C, the complex structure on the target must be
twisted by complex conjugation (so the isomorphism in this case is “semilinear over complex conjugation”).

Definition 3.3.1. Let V and W be inner product spaces and T : V →W a linear map. The adjoint of T
is the linear map T ∗ : W → V defined by the composition

W
(3.3.1)

'
// W ∗

T∨ // V ∗
(3.3.1)−1

'
// V

By definition, T ∗ is the unique mapping W → V satisfying

〈Tv,w〉W = 〈v, T ∗w〉V
for all v ∈ V and w ∈W . One checks that the mapping

Θ : Hom(V,W )
T 7→T ∗ // Hom(W,V )

is semi-linear over complex conjugation (i.e. it is additive and satisfies Θ(af) = aΘ(f)). Moreover, one
has T ∗∗ = T for any T ∈ Hom(V,W ), and if U is a third inner product space then (ST )∗ = T ∗S∗ for any
S ∈ Hom(W,U) and T ∈ Hom(V,W ).

Remark 3.3.2. Let e be a basis of V and f a basis of W . For T ∈ Hom(V,W ) one checks that

f [T ]e = e[T ∗]
t

f .

That is, the matrix of the adjoint of T is the conjugate transpose of the matrix of T .

Definition 3.3.3. Let T : V → V be a linear map on an inner product space V . We say that T is:

(1) Self adjoint if T ∗ = T . If we wish to emphasize that the ground field is R, we will say that T is
symmetric, while in the case that the ground field is C, we will say that T is Hermitian.

(2) Normal if T commutes with its adjoint; i.e. if TT ∗ = T ∗T . Observe that every self adjoint operator
is normal. There are, however, normal operators which are not self adjoint.

(3) An Isometry if ||Tv|| = ||v|| for all v ∈ V . If we wish to emphasize that the ground field is R, we
will say in this case that T is orthogonal; in the complex case we will say unitary.

Remark 3.3.4. It is easy to see that any eigenvalue of an Hermitian operator must be real, while any
eigenvalue of a unitary operator must have absolute value 1.

Theorem 3.3.5 (Spectral Theorem). Let V be an inner product space and T : V → V .

(1) If the base field is C, then V has an orthonormal basis consisting of eigenvectors for T if and only
if T is normal.

(2) If the base field is R, then V has an orthonormal basis consisting of eigenvectors for T if and only
if T is self adjoint.

From part (1) of the Spectral Theorem we deduce:

Corollary 3.3.6. Let T : V → V be a normal linear transformation on a complex inner product space.
Then T is Hermitian if and only if all eigenvalues are real and unitary if and only if all eigenvalues have
absolute value 1.
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