Review of Basic Analysis

Integration Workshop 2017, Department of Mathematics, University of Arizona

Lecture notes by Ibrahim Fatkullin *ibrahim@math.arizona.edu*

1. SEQUENCES AND SERIES

<u>DEF 1.1</u> A set \mathcal{M} and a function $d : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$ are called a **metric space** if

1. d(x,y) = d(y,x)2. d(x,y) = 0 iff x = y3. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

<u>DEF 1.2</u> A sequence $\{x_n\}$ converges to x, if for every $\epsilon > 0$ there exists N, such that for all $n \ge N$, $d(x, x_n) \le \epsilon$.

<u>DEF 1.3</u> A sequence $\{x_n\}$ is called **Cauchy** (or **fundamental**) if for every $\epsilon > 0$ there exists *N*, such that $d(x_m, x_n) \le \epsilon$, for all $m, n \ge N$.

<u>DEF 1.4</u> A metric space is called **complete** if every Cauchy sequence converges.

<u>DEF 1.5</u> A metric space is called **compact** if any sequence has a converging subsequence.

DEF 1.6 Series

$$\sum_{n=1}^{\infty} x_n \tag{1}$$

converges if its partial sums, $S_N = \sum_{n=1}^N x_N$ converge as $N \to \infty$.

DEF 1.7 Series (1) converges absolutely if

$$\lim_{N\to\infty}\sum_{n=1}^N |x_n| < \infty.$$

<u>DEF 1.8</u> Given a power series, $\sum_{n=0}^{\infty} c_n z^n$, define

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}; \qquad R = \frac{1}{\alpha}.$$

R is called the **radius of convergence** of the series, the latter converges if |z| < R and diverges if |z| > R.

1.1. CONVERGENCE TESTS

Root test. Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|x_n|}$. Series (1) converges (absolutely) or diverges if $\alpha < 1$ or $\alpha > 1$ respectively. (More analysis is required if $\alpha = 1$)

Ratio test. Series (1) converges (absolutely) if $\limsup_{n\to\infty} |x_{n+1}/x_n| < 1$ and diverges if there exists some number *N* such that $|x_{n+1}/x_n| \ge 1$ for all n > N.

Comparison test. If
$$\lim_{n \to \infty} \left| \frac{x_n}{y_n} \right| = C \in (0, \infty)$$
, series $\sum_{n=1}^{\infty} x_n$ converges absolutely iff series $\sum_{n=1}^{\infty} y_n$ does.

1.2. IS THERE A "BOUNDARY" BETWEEN CONVERGING AND DIVERGING SERIES?

The series

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

converges for $\alpha > 1$ and diverges for $\alpha \le 1$. Thus the exponent $\alpha = 1$ corresponds to the "boundary" for power-law decay rates between converging and diverging series. However, for more general functions, how "close" can we get to 1/n while still maintaining convergence? For example,

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}}$$

converges for all $\alpha > 1$ and diverges for $\alpha \le 1$. So we lifted our boundary a bit, from 1/n to $1/(n \ln n)$. We can go even further and observe that

$$\sum_{n=3}^{\infty} \frac{1}{n \ln n (\ln \ln n)^{\alpha}}$$

converges for all $\alpha > 1$ and diverges for $\alpha \le 1$. Etc, etc: we can keep adding more iterated logarithms (or other functions) in a similar manner. Is there some limit to this process? In other words, e.g, is there some special monotone-decreasing sequence $\{b_n\}$ such that whenever $c_n/b_n \to 0$ (as $n \to \infty$) the series $\sum c_n$ converges and whenever $b_n/d_n \to 0$, the series $\sum d_n$ diverges?

1.3. FUN STUFF

Consider the geometric series,

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \qquad |z| < 1.$$

Pretending that this formula is valid for arbitrary $z \neq 1$, we can "derive" that $1 - 1 + 1 - 1 + \dots = 1/2$, or $1 + 2 + 4 + 8 + \dots = -1$. In this case the divergent sum acquires meaning via analytic continuation of some appropriately chosen function outside of the radius of convergence of its power series. In a similar fashion one can get such formulas as, e.g.,

$$1 - 2 + 3 - 4 + \dots := \left. \frac{1}{(1+z)^2} \right|_{z=1} = \frac{1}{4}; \qquad 1 + 2 + 3 + 4 + \dots := \zeta(-1) = -\frac{1}{12}$$

2. CONTINUITY AND DIFFERENTIATION

Unless specified otherwise, we consider functions between metric spaces \mathcal{X} and \mathcal{Y} .

<u>DEF 2.1</u> A function *f* is called **continuous at** x_0 if for every $\epsilon > 0$ there exists $\delta > 0$, such that for all $x \in \mathcal{X}$ with $d_{\mathcal{X}}(x, x_0) < \delta$, $d_{\mathcal{Y}}(f(x), f(x_0)) < \epsilon$. A function which is continuous at every point of \mathcal{X} is called **continuous in** \mathcal{X} .

<u>DEF 2.2</u> A function *f* is called **uniformly continuous** if for every $\epsilon > 0$ there exists $\delta > 0$, such that for all $x_1, x_2 \in \mathcal{X}$ with $d_{\mathcal{X}}(x_1, x_2) < \delta, d_{\mathcal{Y}}(f(x_1), f(x_2)) < \epsilon$.

Assume that our metric spaces are also *normed* linear vector spaces with norm defined as ||f|| = d(f, 0).

<u>DEF 2.3</u> Suppose \mathcal{O} is an open set in \mathcal{X} ; f maps \mathcal{O} into \mathcal{Y} ; $x_0 \in \mathcal{O}$. If there exists a *bounded* linear operator $\mathbf{D}f(x_0)$, such that

$$\lim_{\|x\|_{\mathcal{X}} \to 0} \frac{\|f(x_0 + x) - f(x_0) - \mathbf{D}f(x_0)x\|_{\mathcal{Y}}}{\|x\|_{\mathcal{X}}} = 0,$$
(2)

then *f* is called **differentiable at** x_0 , and **D** $f(x_0)$ is called the **(Fréchet) derivative** or **differential** of *f* at x_0 . If *f* is differentiable at every point in \mathcal{O} , we call *f* differentiable in \mathcal{O} . The *determinant* of the operator **D** $f(x_0)$ (if well-defined) is called the **Jacobian** of *f* at x_0 .

2.1. Some Important Results

Mean value theorem. Suppose *f* is continuous on [a, b] and differentiable in (a, b). There exists $x \in (a, b)$, such that

$$f'(x) = \frac{f(a) - f(b)}{a - b}.$$

Taylor's theorem (1d). Suppose $f \in C^{n-1}[a, b]$ and $f^{(n)}(x)$ exists for all $x \in (a, b)$. For all x and y such that a < x < y < b, there exists $\xi \in [x, y]$ such that

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(y)}{k!} (x-y)^k + \frac{f^{(n)}(\xi)}{n!} (x-y)^n.$$

Taylor's theorem (multi-d). Let \overline{B} be a closed ball centered at the origin in \mathbb{R}^n ; $f \in C^n(\overline{B})$; $x \in B$. Then

$$f(x) = \sum_{|\alpha| < n} \frac{x^{\alpha}}{\alpha!} \ \partial^{\alpha} f(0) + \sum_{|\alpha| = n} \frac{x^{\alpha}}{\alpha!} \ \partial^{\alpha} f(\xi x), \quad \text{for some} \quad \xi \in [0, 1].$$

Inverse function theorem. Assume that *f* is a continuously differentiable function from \mathbb{R}^n and $\mathbf{D}f(x)$ is invertible. Then *f* is invertible in some neighborhood of *x* and its inverse is continuously differentiable in some neighborhood of *f*(*x*).

Implicit function theorem. Assume that *F* is a continuously differentiable function from (an open subset) $\mathcal{O} \subset \mathbb{R}^n \times \mathbb{R}^m$ into \mathbb{R}^m ; $(x, y) \in \mathcal{O}$; F(x, y) = 0; and **D***F* is one-to-one. Then there exists a neighborhood $\mathcal{N} \subset \mathbb{R}^n$ containing *x* and a function $f : \mathcal{N} \to \mathbb{R}^m$, such that f(x) = y and F(x, f(x)) = 0 for all $x \in \mathcal{N}$.

3. INTEGRATION, THEOREMS RELATING INTEGRALS AND DERIVATIVES

<u>DEF 3.1</u> A finite ordered subset of [a,b], $\pi = (\pi_1, \ldots, \pi_n)$, such that

$$a = \pi_1 < \pi_2 < \ldots < \pi_{n-1} < \pi_n = b$$

is called a **partition** of [a, b]. We say π_2 is a **refinement** of π_1 if $\pi_1 \subset \pi_2$. A sequence of partitions $\{\pi^n\}$ is called **fine** if each partition in the sequence is a refinement of the previous one and

$$\lim_{n \to \infty} \max_{k=2,...,|\pi^n|} (\pi_k^n - \pi_{k-1}^n) = 0.$$

<u>DEF 3.2</u> Suppose the functions *f* and *g* are such that following limit exists and is the same for all fine sequences of partitions of [a, b] and all $x(\pi) = (x_2, ..., x_{|\pi|})$ such that $x_k \in [\pi_{k-1}, \pi_k]$, $k = 2, ..., |\pi|$:

$$\lim_{n\to\infty}\sum_{k=2}^{|\boldsymbol{\pi}^n|}f(x_k(\boldsymbol{\pi}^n))|g(\boldsymbol{\pi}^n_k)-g(\boldsymbol{\pi}^n_{k-1})|.$$

It is then called the **Riemann-Stieltjes integral** of *f* with respect to *g* over $[a, b] =: \Omega$ and is denoted by

$$\int_{a}^{b} f(x) \, \mathrm{d}g(x) \qquad \text{or} \qquad \int_{\Omega} f \, \mathrm{d}g. \tag{3}$$

■ If *g* is differentiable, then Riemann-Stieltjes integral can be related to the usual Riemann integral,

$$\int_{\Omega} f \, \mathrm{d}g = \int_{\Omega} f(x)g'(x) \, \mathrm{d}x.$$

<u>DEF 3.3</u> A function $f : [a, b] \to \mathbb{R}$ is called of **bounded variation** if

$$V_a^b(f) \coloneqq \sup_{\pi \in \mathcal{P}[a,b]} \sum_{n=2}^{|\pi|} |f(\pi_n) - f(\pi_{n-1})| < \infty.$$

Here $\mathcal{P}[a, b]$ denotes the set of all partitions of [a, b]. The space of all functions of bounded variation on [a, b] is denoted by $\mathsf{BV}[a, b]$.

3.1. Some Important Results

Existence of Riemann-Stieltjes integral Suppose $f \in C[a, b]$ and $g \in BV[a, b]$, then the Riemann-Stieltjes integral (3) exists.

■ For a given $g \in BV[a, b]$, the class of functions integrable with respect to g is larger than C[a, b] and essentially includes all Riemann-integrable functions which do not share points of discontinuity with g.

Fundamental theorem of calculus. Let $f \in C[a, b]$, $g \in BV[a, b]$, then

$$\int_{a}^{b} dg = g(b) - g(a); \text{ if in addition } g \in C[a, b], \text{ then } \frac{d}{dg} \int_{a}^{x} f(y) dg(y) = f(x) \text{ for all } x \in [a, b].$$

Here $\frac{dF(x)}{dg(x)} := \lim_{\epsilon \to 0} \frac{F(x+\epsilon) - F(x)}{g(x+\epsilon) - g(x)}$ — (essentially) the **Radon-Nikodym derivative** of *F* with respect to *g*.

Change of variables. Suppose $g, h \in BV(\Omega)$; $f, dg/dh \in C[a, b]$, then

$$\int_{\Omega} f \, \mathrm{d}g = \int_{\Omega} f \frac{\mathrm{d}g}{\mathrm{d}h} \, \mathrm{d}h$$

Integration by parts. Suppose $f, g \in BV[a, b], f \in C[a, b]$, then

$$\int_a^b f \,\mathrm{d}g = f(b)g(b) - f(a)g(a) - \int_a^b g \,\mathrm{d}f.$$

Integral mean value theorem I. Let *f* be continuous and *g* monotone on [a, b], then there exists $x \in [a, b]$, such that

$$\int_a^b f \, \mathrm{d}g = f(x) \big[g(b) - g(a) \big].$$

Integral mean value theorem II. Let *f* be monotone and *g* be continuous on [a, b], then there exists $x \in [a, b]$, such that

$$\int_{a}^{b} f \, \mathrm{d}g = f(a) \big[g(x) - g(a) \big] + f(b) \big[g(b) - g(x) \big].$$

4. SEQUENCES OF FUNCTIONS

<u>DEF 4.1</u> A sequence of functions $\{f_n\}$ converges to f **point-wise** in \mathcal{X} if for every $x \in \mathcal{X}$,

$$\lim_{n\to\infty}f_n(x)=f(x)$$

<u>DEF 4.2</u> A sequence of functions $\{f_n\}$ converges to f **uniformly** in \mathcal{X} if for every $\epsilon > 0$ there exists N such that for all n > N and all $x \in \mathcal{X}$,

$$d(f_n(x), f(x)) < \epsilon.$$

<u>DEF 4.3</u> A family of functions, \mathcal{F} , is called **equicontinuous** if for all $\epsilon > 0$ there exists $\delta > 0$, such that whenever $d_{\mathcal{X}}(x_1, x_2) < \delta$,

$$d_{\mathcal{Y}}(f(x_1), f(x_2)) < \epsilon \quad \text{for all} \quad f \in \mathcal{F}.$$

4.1. Some Important Results

Weierstrass M-test. If $\sup_{x \in \mathcal{X}} |f_n(x)| < M_n$ and the series $\sum M_n$ converges, then $\sum f_n(x)$ converges uniformly in \mathcal{X} .

Uniform convergence theorem. A uniform limit of continuous functions is continuous.

Monotone convergence theorem. A point-wise monotone sequence of continuous functions converging to a continuous function on a compact set does so uniformly.

Exchanging the order of limits and integration. Suppose f_n converge uniformly to f in Ω and each f_n is integrable with respect to g over Ω , then

$$\lim_{n\to\infty}\int_\Omega f_n\,\mathrm{d}g=\int_\Omega f\,\mathrm{d}g.$$

Exchanging the order of limits and differentiation. Suppose f'_n converge uniformly on [a, b] and f_n converge at some $x_0 \in [a, b]$, then f_n converge uniformly on [a, b] to some differentiable function f and

$$\lim_{n\to\infty}f'_n(x)=f'(x).$$

Stone-Weierstrass theorem. Continuous functions on \mathbb{R}^n may be uniformly approximated by polynomials on compact subsets of \mathbb{R}^n .

Arzelà-Ascoli Theorem. Every infinite equicontinuous family of maps between compact metric spaces contains a uniformly converging sequence.