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1. SEQUENCES AND SERIES

DEF 1.1 A setM and a function d ∶M×M→ R+ are called a metric space if

1. d(x, y) = d(y, x)
2. d(x, y) = 0 iff x = y

3. d(x, y) ≤ d(x, z)+ d(z, y) (triangle inequality)

DEF 1.2 A sequence {xn} converges to x, if for every ε > 0 there exists N, such that for all n ≥ N,

d(x, xn) ≤ ε.

DEF 1.3 A sequence {xn} is called Cauchy (or fundamental) if for every ε > 0 there exists N, such that

d(xm, xn) ≤ ε, for all m, n ≥ N.

DEF 1.4 A metric space is called complete if every Cauchy sequence converges.

DEF 1.5 A metric space is called compact if any sequence has a converging subsequence.

DEF 1.6 Series
∞
∑
n=1

xn (1)

converges if its partial sums, SN =
N
∑
n=1

xN converge as N →∞.

DEF 1.7 Series (1) converges absolutely if

lim
N→∞

N
∑
n=1

∣xn∣ <∞.

DEF 1.8 Given a power series,
∞
∑
n=0

cnzn, define

α = lim sup
n→∞

n
√

∣cn∣; R = 1
α

.

R is called the radius of convergence of the series, the latter converges if ∣z∣ < R and diverges if ∣z∣ > R.
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1.1. CONVERGENCE TESTS

Root test. Let α = lim supn→∞
n
√

∣xn∣. Series (1) converges (absolutely) or diverges if α < 1 or α > 1 respec-
tively. (More analysis is required if α = 1)

Ratio test. Series (1) converges (absolutely) if lim supn→∞ ∣xn+1/xn∣ < 1 and diverges if there exists some
number N such that ∣xn+1/xn∣ ≥ 1 for all n > N.

Comparison test. If lim
n→∞ ∣xn

yn
∣ = C ∈ (0,∞), series

∞
∑
n=1

xn converges absolutely iff series
∞
∑
n=1

yn does.

1.2. IS THERE A “BOUNDARY” BETWEEN CONVERGING AND DIVERGING SERIES?

The series ∞
∑
n=1

1
nα

converges for α > 1 and diverges for α ≤ 1. Thus the exponent α = 1 corresponds to the “boundary” for
power-law decay rates between converging and diverging series. However, for more general functions,
how “close” can we get to 1/n while still maintaining convergence? For example,

∞
∑
n=2

1
n(ln n)α

converges for all α > 1 and diverges for α ≤ 1. So we lifted our boundary a bit, from 1/n to 1/(n ln n). We
can go even further and observe that

∞
∑
n=3

1
n ln n(ln ln n)α

converges for all α > 1 and diverges for α ≤ 1. Etc, etc: we can keep adding more iterated logarithms
(or other functions) in a similar manner. Is there some limit to this process? In other words, e.g, is there
some special monotone-decreasing sequence {bn} such that whenever cn/bn → 0 (as n →∞) the series ∑ cn
converges and whenever bn/dn → 0, the series ∑ dn diverges?

1.3. FUN STUFF

Consider the geometric series,
∞
∑
n=0

zn = 1
1− z

, ∣z∣ < 1.

Pretending that this formula is valid for arbitrary z ≠ 1, we can “derive” that 1 − 1 + 1 − 1 + ⋯ = 1/2, or
1 + 2 + 4 + 8 +⋯ = −1. In this case the divergent sum acquires meaning via analytic continuation of some
appropriately chosen function outside of the radius of convergence of its power series. In a similar fashion
one can get such formulas as, e.g.,

1− 2+ 3− 4+⋯ ∶= 1
(1+ z)2

RRRRRRRRRRRz=1

= 1
4

; 1+ 2+ 3+ 4+⋯ ∶= ζ(−1) = − 1
12

.
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2. CONTINUITY AND DIFFERENTIATION

Unless specified otherwise, we consider functions between metric spaces X and Y .

DEF 2.1 A function f is called continuous at x0 if for every ε > 0 there exists δ > 0, such that for all x ∈ X
with dX (x, x0) < δ, dY( f (x), f (x0)) < ε. A function which is continuous at every point of X is called
continuous in X .

DEF 2.2 A function f is called uniformly continuous if for every ε > 0 there exists δ > 0, such that for all
x1, x2 ∈ X with dX (x1, x2) < δ, dY( f (x1), f (x2)) < ε.

Assume that our metric spaces are also normed linear vector spaces with norm defined as ∥ f ∥ = d( f , 0).

DEF 2.3 Suppose O is an open set in X ; f maps O into Y ; x0 ∈ O. If there exists a bounded linear operator
D f (x0), such that

lim
∥x∥X→0

∥ f (x0 + x)− f (x0)−D f (x0)x∥Y
∥x∥X

= 0, (2)

then f is called differentiable at x0, and D f (x0) is called the (Fréchet) derivative or differential of f at
x0. If f is differentiable at every point in O, we call f differentiable in O. The determinant of the operator
D f (x0) (if well-defined) is called the Jacobian of f at x0.

2.1. SOME IMPORTANT RESULTS

Mean value theorem. Suppose f is continuous on [a, b] and differentiable in (a, b). There exists x ∈ (a, b),
such that

f ′(x) = f (a)− f (b)
a − b

.

Taylor’s theorem (1d). Suppose f ∈ Cn−1[a, b] and f (n)(x) exists for all x ∈ (a, b). For all x and y such that
a < x < y < b, there exists ξ ∈ [x, y] such that

f (x) =
n−1
∑
k=0

f (k)(y)
k!

(x − y)k + f (n)(ξ)
n!

(x − y)n.

Taylor’s theorem (multi-d). Let B̄ be a closed ball centered at the origin in Rn; f ∈ Cn(B̄); x ∈ B. Then

f (x) = ∑
∣α∣<n

xα

α!
∂α f (0) + ∑

∣α∣=n

xα

α!
∂α f (ξx), for some ξ ∈ [0, 1].

Inverse function theorem. Assume that f is a continuously differentiable function from Rn and D f (x) is
invertible. Then f is invertible in some neighborhood of x and its inverse is continuously differentiable in
some neighborhood of f (x).

Implicit function theorem. Assume that F is a continuously differentiable function from (an open subset)
O ⊂ Rn ×Rm into Rm; (x, y) ∈ O; F(x, y) = 0; and DF is one-to-one. Then there exists a neighborhood
N ⊂ Rn containing x and a function f ∶ N → Rm, such that f (x) = y and F(x, f (x)) = 0 for all x ∈ N .
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3. INTEGRATION, THEOREMS RELATING INTEGRALS AND DERIVATIVES

DEF 3.1 A finite ordered subset of [a, b], π = (π1, . . . , πn), such that

a = π1 < π2 < . . . < πn−1 < πn = b

is called a partition of [a, b]. We say π2 is a refinement of π1 if π1 ⊂ π2. A sequence of partitions {πn} is
called fine if each partition in the sequence is a refinement of the previous one and

lim
n→∞ max

k=2,...,∣πn ∣
(πn

k −πn
k−1) = 0.

DEF 3.2 Suppose the functions f and g are such that following limit exists and is the same for all fine
sequences of partitions of [a, b] and all x(π) = (x2, . . . , x∣π∣) such that xk ∈ [πk−1, πk], k = 2, . . . , ∣π∣:

lim
n→∞

∣πn ∣
∑
k=2

f (xk(πn))∣g(πn
k )− g(πn

k−1)∣.

It is then called the Riemann-Stieltjes integral of f with respect to g over [a, b] = : Ω and is denoted by

∫
b

a
f (x)dg(x) or ∫

Ω
f dg. (3)

∎ If g is differentiable, then Riemann-Stieltjes integral can be related to the usual Riemann integral,

∫
Ω

f dg = ∫
Ω

f (x)g′(x)dx.

DEF 3.3 A function f ∶ [a, b]→ R is called of bounded variation if

Vb
a( f ) ∶= sup

π∈P[a,b]

∣π∣
∑
n=2

∣ f (πn)− f (πn−1)∣ <∞.

Here P[a, b] denotes the set of all partitions of [a, b]. The space of all functions of bounded variation on
[a, b] is denoted by BV[a, b].

3.1. SOME IMPORTANT RESULTS

Existence of Riemann-Stieltjes integral Suppose f ∈ C[a, b] and g ∈ BV[a, b], then the Riemann-Stieltjes
integral (3) exists.

∎ For a given g ∈ BV[a, b], the class of functions integrable with respect to g is larger than C[a, b] and
essentially includes all Riemann-integrable functions which do not share points of discontinuity with g.

Fundamental theorem of calculus. Let f ∈ C[a, b], g ∈ BV[a, b], then

∫
b

a
dg = g(b)− g(a); if in addition g ∈ C[a, b], then

d
dg ∫

x

a
f (y)dg(y) = f (x) for all x ∈ [a, b].

Here
dF(x)
dg(x) ∶= lim

ε→0

F(x + ε)− F(x)
g(x + ε)− g(x) — (essentially) the Radon-Nikodym derivative of F with respect to g.
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Change of variables. Suppose g, h ∈ BV(Ω); f , dg/dh ∈ C[a, b], then

∫
Ω

f dg = ∫
Ω

f
dg
dh

dh.

Integration by parts. Suppose f , g ∈ BV[a, b], f ∈ C[a, b], then

∫
b

a
f dg = f (b)g(b)− f (a)g(a)−∫

b

a
g d f .

Integral mean value theorem I. Let f be continuous and g monotone on [a, b], then there exists x ∈ [a, b],
such that

∫
b

a
f dg = f (x)[g(b)− g(a)].

Integral mean value theorem II. Let f be monotone and g be continuous on [a, b], then there exists x ∈ [a, b],
such that

∫
b

a
f dg = f (a)[g(x)− g(a)]+ f (b)[g(b)− g(x)].

4. SEQUENCES OF FUNCTIONS

DEF 4.1 A sequence of functions { fn} converges to f point-wise in X if for every x ∈ X ,

lim
n→∞ fn(x) = f (x).

DEF 4.2 A sequence of functions { fn} converges to f uniformly in X if for every ε > 0 there exists N such
that for all n > N and all x ∈ X ,

d( fn(x), f (x)) < ε.

DEF 4.3 A family of functions, F , is called equicontinuous if for all ε > 0 there exists δ > 0, such that
whenever dX (x1, x2) < δ,

dY( f (x1), f (x2)) < ε for all f ∈ F .

4.1. SOME IMPORTANT RESULTS

Weierstrass M-test. If supx∈X ∣ fn(x)∣ < Mn and the series ∑Mn converges, then ∑ fn(x) converges uni-
formly in X .

Uniform convergence theorem. A uniform limit of continuous functions is continuous.

Monotone convergence theorem. A point-wise monotone sequence of continuous functions converging to
a continuous function on a compact set does so uniformly.

Exchanging the order of limits and integration. Suppose fn converge uniformly to f in Ω and each fn is
integrable with respect to g over Ω, then

lim
n→∞∫Ω

fn dg = ∫
Ω

f dg.
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Exchanging the order of limits and differentiation. Suppose f ′n converge uniformly on [a, b] and fn con-
verge at some x0 ∈ [a, b], then fn converge uniformly on [a, b] to some differentiable function f and

lim
n→∞ f ′n(x) = f ′(x).

Stone-Weierstrass theorem. Continuous functions on Rn may be uniformly approximated by polynomials
on compact subsets of Rn.

Arzelà-Ascoli Theorem. Every infinite equicontinuous family of maps between compact metric spaces
contains a uniformly converging sequence.
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