Review of Basic Analysis

Integration Workshop 2017, Department of Mathematics, University of Arizona

Lecture notes by Ibrahim Fatkullin *ibrahim@math.arizona.edu*

1. SEQUENCES AND SERIES

DEF 1.1 A set M and a function *d* ∶ M×M → **R**⁺ are called a **metric space** if

1. $d(x, y) = d(y, x)$ 2. $d(x, y) = 0$ *iff* $x = y$ 3. $d(x, y) \leq d(x, z) + d(z, y)$ *(triangle inequality)*

<u>DEF 1.2</u> A sequence $\{x_n\}$ **converges** to *x*, if for every $\epsilon > 0$ there exists *N*, such that for all $n \ge N$, $d(x, x_n) \leq \epsilon$.

DEF 1.3 A sequence $\{x_n\}$ is called **Cauchy** (or **fundamental**) if for every $\epsilon > 0$ there exists *N*, such that $d(x_m, x_n) \leq \epsilon$, for all $m, n \geq N$.

DEF 1.4 A metric space is called **complete** if every Cauchy sequence converges.

DEF 1.5 A metric space is called **compact** if any sequence has a converging subsequence.

DEF 1.6 Series

$$
\sum_{n=1}^{\infty} x_n \tag{1}
$$

converges if its partial sums, *S^N* = *N* ∑ *n*=1 x_N converge as $N \to \infty$.

DEF 1.7 Series (1) **converges absolutely** if

$$
\lim_{N\to\infty}\sum_{n=1}^N|x_n|<\infty.
$$

<u>DEF 1.8</u> Given a power series*,* ∞ ∑ *n*=0 $c_n z^n$, define

$$
\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}; \qquad R = \frac{1}{\alpha}.
$$

R is called the **radius of convergence** of the series, the latter converges if ∣*z*∣ < *R* and diverges if ∣*z*∣ > *R*.

1.1. CONVERGENCE TESTS

Root test. Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{n}$ ∣*xn*∣. Series (1) converges (absolutely) or diverges if *α* < 1 or *α* > 1 respectively. (More analysis is required if $\alpha = 1$)

Ratio test. Series (1) converges (absolutely) if $\limsup_{n\to\infty} |x_{n+1}/x_n| < 1$ and diverges if there exists some number *N* such that $|x_{n+1}/x_n| \geq 1$ for all $n > N$.

Comparison test. If
$$
\lim_{n \to \infty} \left| \frac{x_n}{y_n} \right| = C \in (0, \infty)
$$
, series $\sum_{n=1}^{\infty} x_n$ converges absolutely iff series $\sum_{n=1}^{\infty} y_n$ does.

1.2. IS THERE A "BOUNDARY" BETWEEN CONVERGING AND DIVERGING SERIES?

The series ∞

$$
\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}
$$

converges for $\alpha > 1$ and diverges for $\alpha \leq 1$. Thus the exponent $\alpha = 1$ corresponds to the "boundary" for power-law decay rates between converging and diverging series. However, for more general functions, how "close" can we get to $1/n$ while still maintaining convergence? For example,

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}}
$$

converges for all *α* > 1 and diverges for *α* ≤ 1. So we lifted our boundary a bit, from 1/*n* to 1/(*n* ln *n*). We can go even further and observe that

$$
\sum_{n=3}^{\infty} \frac{1}{n \ln n (\ln \ln n)^{\alpha}}
$$

converges for all $\alpha > 1$ and diverges for $\alpha \le 1$. Etc, etc: we can keep adding more iterated logarithms (or other functions) in a similar manner. Is there some limit to this process? In other words, e.g, is there some special monotone-decreasing sequence ${b_n}$ such that whenever $c_n/b_n \to 0$ (as $n \to \infty$) the series $\sum c_n$ converges and whenever $b_n/d_n \to 0$, the series $\sum d_n$ diverges?

1.3. FUN STUFF

Consider the geometric series,

$$
\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \qquad |z| < 1.
$$

Pretending that this formula is valid for arbitrary *z* ≠ 1, we can "derive" that 1 − 1 + 1 − 1 + ⋯ = 1/2, or $1 + 2 + 4 + 8 + \cdots = -1$. In this case the divergent sum acquires meaning via analytic continuation of some appropriately chosen function outside of the radius of convergence of its power series. In a similar fashion one can get such formulas as, e.g.,

$$
1-2+3-4+\cdots \; := \; \frac{1}{(1+z)^2} \; \Bigg|_{z=1} = \frac{1}{4}; \qquad \qquad 1+2+3+4+\cdots \; := \; \zeta(-1) = -\frac{1}{12}
$$

.

2. CONTINUITY AND DIFFERENTIATION

Unless specified otherwise, we consider functions between metric spaces \mathcal{X} and \mathcal{Y} .

DEF 2.1 A function *f* is called **continuous at** x_0 if for every $\epsilon > 0$ there exists $\delta > 0$, such that for all $x \in \mathcal{X}$ with $d_{\mathcal{X}}(x, x_0) < \delta$, $d_{\mathcal{Y}}(f(x), f(x_0)) < \epsilon$. A function which is continuous at every point of X is called continuous in \mathcal{X} .

DEF 2.2 A function *f* is called **uniformly continuous** if for every $\epsilon > 0$ there exists $\delta > 0$, such that for all $x_1, x_2 \in \mathcal{X}$ with $d_{\mathcal{X}}(x_1, x_2) < \delta, d_{\mathcal{Y}}(f(x_1), f(x_2)) < \epsilon$.

Assume that our metric spaces are also *normed* linear vector spaces with norm defined as $||f|| = d(f, 0)$.

DEF 2.3 Suppose $\mathcal O$ is an open set in $\mathcal X$; f maps $\mathcal O$ into $\mathcal Y$; $x_0 \in \mathcal O$. If there exists a *bounded* linear operator $\mathbf{D} f(x_0)$, such that

$$
\lim_{\|x\|_{\mathcal{X}} \to 0} \frac{\|f(x_0 + x) - f(x_0) - \mathbf{D}f(x_0)x\|_{\mathcal{Y}}}{\|x\|_{\mathcal{X}}} = 0,
$$
\n(2)

then *f* is called **differentiable at** x_0 , and $Df(x_0)$ is called the (Fréchet) derivative or differential of *f* at x_0 . If *f* is differentiable at every point in \mathcal{O} , we call *f* differentiable in \mathcal{O} . The *determinant* of the operator **D** $f(x_0)$ (if well-defined) is called the **Jacobian** of f at x_0 .

2.1. SOME IMPORTANT RESULTS

Mean value theorem. Suppose *f* is continuous on [a , b] and differentiable in (a, b) . There exists $x \in (a, b)$, such that

$$
f'(x) = \frac{f(a) - f(b)}{a - b}.
$$

Taylor's theorem (1d). Suppose $f \in C^{n-1}[a,b]$ and $f^{(n)}(x)$ exists for all $x \in (a,b)$. For all x and y such that $a < x < y < b$, there exists $\zeta \in [x, y]$ such that

$$
f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(y)}{k!} (x-y)^k + \frac{f^{(n)}(\xi)}{n!} (x-y)^n.
$$

Taylor's theorem (multi-d). Let \bar{B} be a closed ball centered at the origin in \mathbb{R}^n ; $f \in C^n(\bar{B})$; $x \in B$. Then

$$
f(x) = \sum_{|\alpha| < n} \frac{x^{\alpha}}{\alpha!} \, \partial^{\alpha} f(0) + \sum_{|\alpha| = n} \frac{x^{\alpha}}{\alpha!} \, \partial^{\alpha} f(\xi x), \qquad \text{for some} \qquad \xi \in [0, 1].
$$

Inverse function theorem. Assume that f is a continuously differentiable function from \mathbb{R}^n and $\mathbf{D}f(x)$ is invertible. Then *f* is invertible in some neighborhood of *x* and its inverse is continuously differentiable in some neighborhood of *f* (*x*).

Implicit function theorem. Assume that *F* is a continuously differentiable function from (an open subset) \mathcal{O} ⊂ \mathbb{R}^n × \mathbb{R}^m into \mathbb{R}^m ; $(x, y) \in \mathcal{O}$; $F(x, y) = 0$; and **D***F* is one-to-one. Then there exists a neighborhood \mathcal{N} ⊂ \mathbb{R}^n containing *x* and a function $f : \mathcal{N} \to \mathbb{R}^m$, such that $f(x) = y$ and $F(x, f(x)) = 0$ for all $x \in \mathcal{N}$.

3. INTEGRATION, THEOREMS RELATING INTEGRALS AND DERIVATIVES

<u>DEF 3.1</u> A finite ordered subset of [a, b], $\pi = (\pi_1, \dots, \pi_n)$, such that

$$
a=\pi_1<\pi_2<\ldots<\pi_{n-1}<\pi_n=b
$$

is called a **partition** of [a,b]. We say π_2 is a **refinement** of π_1 if $\pi_1 \in \pi_2$. A sequence of partitions $\{\pi^n\}$ is called **fine** if each partition in the sequence is a refinement of the previous one and

$$
\lim_{n \to \infty} \max_{k=2,\dots,|\pi^n|} (\pi_k^n - \pi_{k-1}^n) = 0.
$$

DEF 3.2 Suppose the functions *f* and *g* are such that following limit exists and is the same for all fine sequences of partitions of $[a, b]$ and all $x(\pi) = (x_2, \ldots, x_{|\pi|})$ such that $x_k \in [\pi_{k-1}, \pi_k]$, $k = 2, \ldots, |\pi|$:

$$
\lim_{n\to\infty}\sum_{k=2}^{|\pi^n|}f\big(x_k(\pi^n)\big)\big|g(\pi_k^n)-g(\pi_{k-1}^n)\big|.
$$

It is then called the **Riemann-Stieltjes integral** of *f* with respect to *g* over $[a, b] = \Omega$ and is denoted by

$$
\int_{a}^{b} f(x) \, \mathrm{d}g(x) \qquad \text{or} \qquad \int_{\Omega} f \, \mathrm{d}g. \tag{3}
$$

■ If *g* is differentiable, then Riemann-Stieltjes integral can be related to the usual Riemann integral,

$$
\int_{\Omega} f \, \mathrm{d} g = \int_{\Omega} f(x) g'(x) \, \mathrm{d} x.
$$

DEF 3.3 A function *f* ∶ [*a*, *b*] → **R** is called of **bounded variation** if

$$
\mathsf{V}_a^b(f) \coloneqq \sup_{\pi \in \mathcal{P}[a,b]} \sum_{n=2}^{|\pi|} |f(\pi_n) - f(\pi_{n-1})| < \infty.
$$

Here $\mathcal{P}[a, b]$ denotes the set of all partitions of $[a, b]$. The space of all functions of bounded variation on $[a, b]$ is denoted by $BV[a, b]$.

3.1. SOME IMPORTANT RESULTS

Existence of Riemann-Stieltjes integral Suppose $f \in C[a, b]$ and $g \in BV[a, b]$, then the Riemann-Stieltjes integral (3) exists.

■ For a given $g \in BV[a, b]$, the class of functions integrable with respect to *g* is larger than $C[a, b]$ and essentially includes all Riemann-integrable functions which do not share points of discontinuity with *g*.

Fundamental theorem of calculus. Let $f \in C[a, b]$, $g \in BV[a, b]$, then

$$
\int_{a}^{b} dg = g(b) - g(a); \quad \text{if in addition } g \in C[a, b], \quad \text{then} \quad \frac{d}{dg} \int_{a}^{x} f(y) \, dg(y) = f(x) \quad \text{for all } x \in [a, b].
$$

Here $\frac{dF(x)}{dg(x)} \coloneqq \lim_{\epsilon \to 0}$ $F(x+\epsilon) - F(x)$ $\frac{d}{dx}(x+e) - g(x)$ — (essentially) the **Radon-Nikodym derivative** of *F* with respect to *g*. **Change of variables.** Suppose $g, h \in BV(\Omega)$; $f, dg/dh \in C[a, b]$, then

$$
\int_{\Omega} f \, \mathrm{d}g = \int_{\Omega} f \frac{\mathrm{d}g}{\mathrm{d}h} \, \mathrm{d}h.
$$

Integration by parts. Suppose f , $g \in BV[a, b]$, $f \in C[a, b]$, then

$$
\int_a^b f\,\mathrm{d} g = f(b)g(b) - f(a)g(a) - \int_a^b g\,\mathrm{d} f.
$$

Integral mean value theorem I. Let *f* be continuous and *g* monotone on [a , b], then there exists $x \in [a, b]$, such that

$$
\int_a^b f\,\mathrm{d}g = f(x)\big[g(b)-g(a)\big].
$$

Integral mean value theorem II. Let *f* be monotone and *g* be continuous on [*a*, *b*], then there exists $x \in [a, b]$, such that

$$
\int_{a}^{b} f \, dg = f(a) [g(x) - g(a)] + f(b) [g(b) - g(x)].
$$

4. SEQUENCES OF FUNCTIONS

DEF 4.1 A sequence of functions $\{f_n\}$ converges to f **point-wise** in X if for every $x \in \mathcal{X}$,

$$
\lim_{n\to\infty}f_n(x)=f(x).
$$

DEF 4.2 A sequence of functions $\{f_n\}$ converges to f **uniformly** in X if for every $\epsilon > 0$ there exists N such that for all $n > N$ and all $x \in \mathcal{X}$,

$$
d(f_n(x),f(x))<\epsilon.
$$

DEF 4.3 A family of functions, F, is called **equicontinuous** if for all $\epsilon > 0$ there exists $\delta > 0$, such that whenever $d_X(x_1, x_2) < \delta$,

$$
d_{\mathcal{Y}}(f(x_1), f(x_2)) < \epsilon \quad \text{ for all } \quad f \in \mathcal{F}.
$$

4.1. SOME IMPORTANT RESULTS

Weierstrass M-test. If $\sup_{x \in \mathcal{X}} |f_n(x)| < M_n$ and the series $\sum M_n$ converges, then $\sum f_n(x)$ converges uniformly in \mathcal{X} .

Uniform convergence theorem. A uniform limit of continuous functions is continuous.

Monotone convergence theorem. A point-wise monotone sequence of continuous functions converging to a continuous function on a compact set does so uniformly.

Exchanging the order of limits and integration. Suppose f_n converge uniformly to f in Ω and each f_n is integrable with respect to *g* over Ω , then

$$
\lim_{n\to\infty}\int_{\Omega}f_n\,\mathrm{d}g=\int_{\Omega}f\,\mathrm{d}g.
$$

Exchanging the order of limits and differentiation. Suppose f'_n converge uniformly on $[a, b]$ and f_n converge at some $x_0 \in [a, b]$, then f_n converge uniformly on $[a, b]$ to some differentiable function f and

$$
\lim_{n\to\infty}f'_n(x)=f'(x).
$$

Stone-Weierstrass theorem. Continuous functions on \mathbb{R}^n may be uniformly approximated by polynomials on compact subsets of **R***ⁿ* .

Arzel`a-Ascoli Theorem. Every infinite equicontinuous family of maps between compact metric spaces contains a uniformly converging sequence.