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1. SEQUENCES AND SERIES

DEF 1.1 A set M and a function d : M x M — R* are called a metric space if

1. d(x,y) =d(y,x)
2.d(x,y)=0 iff x=y
3. d(x,y) <d(x,z)+d(z,y) (triangle inequality)

DEF 1.2 A sequence {x;,} converges to x, if for every € > 0 there exists N, such that for alln > N,

d(x,x,) <e.

DEF 1.3 A sequence {x,} is called Cauchy (or fundamental) if for every € > 0 there exists N, such that

d(xXm, xn) <€, for all m,n > N.

DEF 1.4 A metric space is called complete if every Cauchy sequence converges.
DEF 1.5 A metric space is called compact if any sequence has a converging subsequence.

DEF 1.6 Series
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converges if its partial sums, Sy = Z xN converge as N — oo.
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DEF 1.7 Series (1) converges absolutely if
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DEF 1.8 Given a power series, Z cnz", define
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R is called the radius of convergence of the series, the latter converges if |z| < R and diverges if |z| > R.
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1.1. CONVERGENCE TESTS

Root test. Let « = limsup,,_ __ {/|xx|. Series (1) converges (absolutely) or diverges if « < 1 or « > 1 respec-
tively. (More analysis is required if « = 1)

Ratio test. Series (1) converges (absolutely) if limsup, , _ [x,+1/xx| < 1 and diverges if there exists some
number N such that |x,11/x,| > 1 foralln > N.
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y =C € (0, ), series Z x; converges absolutely iff series Z yn does.
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Comparison test. If lim
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1.2. IS THERE A “BOUNDARY” BETWEEN CONVERGING AND DIVERGING SERIES?

The series
1
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converges for &« > 1 and diverges for « < 1. Thus the exponent « = 1 corresponds to the “boundary” for
power-law decay rates between converging and diverging series. However, for more general functions,
how “close” can we get to 1/n while still maintaining convergence? For example,
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converges for all « > 1 and diverges for & < 1. So we lifted our boundary a bit, from 1/n to 1/(nlnn). We
can go even further and observe that
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converges for all @« > 1 and diverges for « < 1. Etc, etc: we can keep adding more iterated logarithms
(or other functions) in a similar manner. Is there some limit to this process? In other words, e.g, is there
some special monotone-decreasing sequence {b;, } such that whenever c,,/b,, — 0 (as n - o) the series } c;,
converges and whenever by, /d, — 0, the series . d,, diverges?

1.3. FUN STUFF

Consider the geometric series,
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Y'=—, |7<1L

o 1-z
Pretending that this formula is valid for arbitrary z # 1, we can “derive” that 1-1+1-1+-- = 1/2, or
1+2+4+8+-- = -1. In this case the divergent sum acquires meaning via analytic continuation of some

appropriately chosen function outside of the radius of convergence of its power series. In a similar fashion
one can get such formulas as, e.g.,

1 1 1
1-2+3-4+--- := m 271:1; 1+2+3+4+-- := g(—l):—f.



2. CONTINUITY AND DIFFERENTIATION

Unless specified otherwise, we consider functions between metric spaces X and .

DEF 2.1 A function f is called continuous at x if for every € > 0 there exists 6 > 0, such that for all x ¢ X
with dx(x,x0) < 6, dy(f(x),f(x0)) < €. A function which is continuous at every point of X is called
continuous in X.

DEF 2.2 A function f is called uniformly continuous if for every € > 0 there exists § > 0, such that for all
x1, Xp € X with dy (x1,x2) <9, dy(f(xl),f(xz)) <Ee.

Assume that our metric spaces are also normed linear vector spaces with norm defined as | f| = 4(f,0).

DEF 2.3 Suppose O is an open set in X; f maps O into V; xg € O. If there exists a bounded linear operator

Df(xp), such that
|f G +2) - f(x0) - Df Geo)xly
Jxl =0 2] '

then f is called differentiable at xg, and Df(xg) is called the (Fréchet) derivative or differential of f at
xg. If f is differentiable at every point in O, we call f differentiable in O. The determinant of the operator
Df(xp) (if well-defined) is called the Jacobian of f at x.
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2.1. SOME IMPORTANT RESULTS

Mean value theorem. Suppose f is continuous on [4, b] and differentiable in (a,b). There exists x € (a,b),

such that f(a) - £(b)
/ _ a)—
fi(x) = “ap

Taylor’s theorem (1d). Suppose f € C""![4,b] and f{") (x) exists for all x € (a,b). For all x and y such that
a<x<y<b,there exists ¢ € [x,y] such that
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Taylor’s theorem (multi-d). Let B be a closed ball centered at the origin in R”; f € C"(B); x € B. Then

fx)=> x—o: 9"f(0) + > z—ﬂ; 9% f(&x), for some &el0,1].

lae|<n =* |la|=n

Inverse function theorem. Assume that f is a continuously differentiable function from R"” and Df(x) is
invertible. Then f is invertible in some neighborhood of x and its inverse is continuously differentiable in
some neighborhood of f(x).

Implicit function theorem. Assume that F is a continuously differentiable function from (an open subset)
O c R*"xR" into R"; (x,y) € O; F(x,y) = 0; and DF is one-to-one. Then there exists a neighborhood
N c R” containing x and a function f : N’ - R™, such that f(x) =y and F(x, f(x)) = 0 for all x e \V.



3. INTEGRATION, THEOREMS RELATING INTEGRALS AND DERIVATIVES
DEF 3.1 A finite ordered subset of [a,b], 7w = (714, ..., 714), such that
A=T < <...<Ty_1<7Tp=b

is called a partition of [4,b]. We say 7, is a refinement of 7t if 711 c 715. A sequence of partitions {7t"} is
called fine if each partition in the sequence is a refinement of the previous one and

li v - ) =0.
A, max. ”‘(nk T-1)
DEF 3.2 Suppose the functions f and g are such that following limit exists and is the same for all fine
sequences of partitions of [a,b] and all x(7r) = (x2,...,X|) such that x; € [y, 7], k=2,...,|r|:
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lim 3 f(x(m")|g () - g (miy)].
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It is then called the Riemann-Stieltjes integral of f with respect to g over [a,b] =: Q) and is denoted by
b
[ fwdgx) o [ fdg ®)

m If g is differentiable, then Riemann-Stieltjes integral can be related to the usual Riemann integral,
dg= [ f(x)g/(x)dx.
[ fdg= [ F)g'(x)dx
DEF 3.3 A function f : [a,b] — R s called of bounded variation if
b ||
Va(f):= sup Y If(7t) = f(7p1)| < oo

rePla,b] n=2

Here P[a, b] denotes the set of all partitions of [4,b]. The space of all functions of bounded variation on
[a,b] is denoted by BV[a, b].

3.1. SOME IMPORTANT RESULTS

Existence of Riemann-Stieltjes integral Suppose f € C[a,b] and g € BV[4,b], then the Riemann-Stieltjes
integral (3) exists.

m For a given g € BV[g,b], the class of functions integrable with respect to g is larger than C[a,b] and
essentially includes all Riemann-integrable functions which do not share points of discontinuity with g.
Fundamental theorem of calculus. Let f € C[a,b], ¢ € BV[a,b], then

fbdg =g(b)-g(a); ifinaddition geC[a,b], then ;; fxf(y) dg(y) = f(x) forallxe[a,b].

dF(x) T F(x+¢€)-F(x)
dg(x) = e=0 g(x+e)-g(x)

Here — (essentially) the Radon-Nikodym derivative of F with respect to g.



Change of variables. Suppose g, h € BV(Q); f,dg/dh € C[a, b], then

fodg:fo%dh.

Integration by parts. Suppose f,g € BV[a,b], f € C[a,]], then
b b
[ Fdg = f(0)30) - flrga) - [ gaf.

Integral mean value theorem I. Let f be continuous and ¢ monotone on [4,b], then there exists x € [4,b],
such that

[ fag= f@ls0) @]

Integral mean value theorem II. Let f be monotone and g be continuous on [4, b], then there exists x € [4, b],
such that

[ = F@ls - s@)] + FB)s(0) 5]

4. SEQUENCES OF FUNCTIONS

DEF 4.1 A sequence of functions {f, } converges to f point-wise in X’ if for every x € X,

Tim fi(x) = f(x).

DEF 4.2 A sequence of functions {f,} converges to f uniformly in &’ if for every € > 0 there exists N such
thatforalln > Nand all x € X,
d(fu(x), f(x)) <e.

DEF 4.3 A family of functions, F, is called equicontinuous if for all € > 0 there exists 6 > 0, such that

whenever dy(x1,x3) <46,
dy(f(x1),f(x2)) <e forall felF.

4.1. SOME IMPORTANT RESULTS

Weierstrass M-test. If sup ., |fu(x)| < M, and the series }° M,, converges, then } f,(x) converges uni-
formly in X.

Uniform convergence theorem. A uniform limit of continuous functions is continuous.

Monotone convergence theorem. A point-wise monotone sequence of continuous functions converging to
a continuous function on a compact set does so uniformly.

Exchanging the order of limits and integration. Suppose f,, converge uniformly to f in () and each f; is
integrable with respect to g over (), then

tim [ fidg= [ fdg.
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Exchanging the order of limits and differentiation. Suppose f,; converge uniformly on [4,b] and f, con-
verge at some x € [a, ], then f, converge uniformly on [4,b] to some differentiable function f and

Tim fr(x) = £(x).

Stone-Weierstrass theorem. Continuous functions on R” may be uniformly approximated by polynomials
on compact subsets of R".

Arzela-Ascoli Theorem. Every infinite equicontinuous family of maps between compact metric spaces
contains a uniformly converging sequence.



