Analysis Problems

Integration Workshop 2017, Department of Mathematics, University of Arizona

Compiled by Ibrahim Fatkullin *ibrahim@math.arizona.edu*

BASIC CONCEPTS, SEQUENCES, CONVERGENCE

1. Every bounded increasing sequence in **R** is Cauchy (do not use completeness of **R**). Every bounded sequence in **R***ⁿ* has a converging subsequence.

2. A metric space is compact if and only if it is complete and totally bounded, i.e., for every $r > 0$, it may be covered by a finite number of open balls of radius *r*.

- **3.** Every open set in **R** is a union of at most a countable number of disjoint open intervals.
- **4.** Compute $\lim_{n\to\infty} \sqrt[n]{n}$ without explicitly using that $(\ln n)/n \to 0$ as $n \to \infty$.

SERIES

5. Prove that e is irrational. *(Hint: estimate approximation errors for partial sums of a series representation of* e *or some appropriate quantity related to it.)*

6. A conditionally convergent series (i.e., a non-absolutely convergent series whose partial sums still converge) may be summed to any desired number by an appropriate *rearrangement* of its terms.

7. A sequence is called *Ces`aro summable* if the arithmetic means of its partial sums converge. What is the value of the sum $1 - 1 + 1 - 1 + \cdots$ in Cesaro sense?

8. Find examples of converging and diverging series for which $\lim_{n\to\infty} |x_{n+1}/x_n| = 1$ and $\lim_{n\to\infty} \sqrt[n]{|x_n|} = 1$.

9. If the coefficients of a power series are integers, infinitely many of which are nonzero (i.e., the series is not a polynomial) then the radius of convergence of this series is at most 1.

10. Prove that the radii of convergence of power series $\sum_{n=1}^{\infty}$ ∑ *n*=0 $a_n x^n$ and $\sum_{n=1}^{\infty} a_n$ ∑ *n*=1 na_nx^{n-1} are the same.

11. Suppose all $x_n \geq 0$ and the series $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} x_n$ converges. Set $y_n = \sum_{m=0}^{\infty}$ ∑ *m*=*n* x_m . Prove that \sum^{∞} $\sum_{n=0}$ x_n/y_n diverges,

while $\sum\limits^{\infty}$ $\sum_{n=0} x_n/\sqrt{y_n}$ converges.

12. Prove that $\sum_{n=1}^{\infty}$ ∑ *n*=1 x_n converges iff \prod^{∞} $\prod_{n=1}$ (1 + *x*_{*n*}) converges.

13. Prove that a map of a metric space into a metric space is continuous iff pre-image of every open set is open. Show that if we replaced "pre-image" by "image," the statement would be wrong.

14. An image of a compact set under a continuous map is compact.

15. Intermediate value theorem. An image of a connected set under a continuous map is connected. (A set ^A is called *connected* if it cannot be *minimally* covered by two disjoint open sets.)

16. Level sets of continuous functions are closed.

17. A function continuous on a compact set $\mathcal A$ is also uniformly continuous on $\mathcal A$.

18. A function $f: \mathcal{X} \to \mathbb{R}$ is called convex if inequality,

$$
f\big(\alpha x_1 + (1-\alpha)x_2\big) \leq \alpha f(x_1) + (1-\alpha)f(x_2)
$$

holds for all $x_1, x_2 \in \mathcal{X}$ and $\alpha \in [0, 1]$. Prove that convex functions are continuous.

19. A function $f: \mathcal{X} \to \mathcal{Y}$ is called **Hölder continuous** with exponent $\alpha \in [0,1]$ if there exists some constant *C* such that for all $x_1, x_2 \in \mathcal{X}$,

$$
d_{\mathcal{Y}}(f(x_1), f(x_2)) \leq C d_{\mathcal{X}}^{\alpha}(x_1, x_2).
$$

Prove that if $\alpha > 0$, f is continuous; if $\alpha > 1$, f is constant. (Hölder continuity with $\alpha = 1$ is also referred to as **Lipschitz** continuity.)

20. Construct a function *^f* [∶] **^R** [→] **^R** which is continuous on all irrationals and discontinuous on all rationals. Prove that the opposite is impossible.

DIFFERENTIABILITY

21. Is there a function, differentiable on all irrationals and discontinuous on all rationals?

22. Suppose some *sublevel set,* $\mathcal{F} = \{x : f(x) \leq F\}$, of a differentiable function $f : \mathcal{X} \to \mathbb{R}$ is compact, then *f* achieves its minimum at some $x \in \mathcal{F}$, and its derivative at *x* vanishes.

23. Prove Taylor's theorem using the mean value theorem.

24. If partial derivatives of $f : \mathbb{R}^n \to \mathbb{R}$ are bounded in a neighborhood of *x*, then *f* is continuous at *x*.

25. Find a function discontinuous at the origin whose partial derivatives at the origin are nevertheless well-defined.

26. If there exists a function $Df(x_0): \mathcal{X} \to \mathcal{Y}$, such that for all $x \in \mathcal{X}$,

$$
\lim_{\epsilon \to 0} \frac{\|f(x_0 + \epsilon x) - f(x_0) - \epsilon \mathbf{D}f(x_0; x)\|}{\epsilon} = 0,
$$

it is called the **directional (Gâteaux) derivative** of f at x_0 . Give examples of non-differentiable functions which are Gâteaux-differentiable. (Hint: this may happen if, e.g., $\mathbf{D}f(x_0; x)$ is not a linear map of x.) Suppose $Df(x_0)$ exists and is linear, would this imply Fréchet differentiability as well?

27. Give example of a function whose derivative at 0 is equal to 1, though the function itself is not invertible in any neighborhood of 0.

28. A function is of bounded variation iff it may be represented as a difference of two monotoneincreasing functions.

29. Integral test for convergence of series. Suppose *^f* [∶] **^R**⁺ [→] **^R**⁺ is monotone-decreasing, then

$$
\sum_{n=1}^{\infty} f(n)
$$
 converges iff
$$
\int_{1}^{\infty} f(x) dx
$$
 converges.

- **30.** Prove that if \int_0^1 $\int_0^{\infty} f(x)x^n dx = 0$ for all $n = 0, 1, 2...$ and f is continuous, then $f \equiv 0$ on [0, 1].
- **31.** Show by direct computation that

$$
\int_1^{\infty} \left(\int_1^{\infty} \frac{x^2 - y^2}{(x^2 + y^2)^2} \ dy \right) dx = - \int_1^{\infty} \left(\int_1^{\infty} \frac{x^2 - y^2}{(x^2 + y^2)^2} \ dx \right) dy = \frac{\pi}{4}.
$$

32. Let Ω be an open bounded subset of **R**² with smooth boundary *∂* Ω. Prove that

$$
\text{Vol}(\Omega) = \iint_{\Omega} dx \, dy = \oint_{\partial \Omega} x \, dy = -\oint_{\partial \Omega} y \, dx = \frac{1}{2} \oint_{\partial \Omega} \left[x \, dy - y \, dx \right].
$$

SEQUENCES OF FUNCTIONS

33. Partial sums of power series and their derivatives (of all orders) converge uniformly on compact subsets of their open intervals of convergence.

34. For real-valued functions on a metric space X , define the *supremum norm*:

$$
||f|| = \sup_{x \in \mathcal{X}} |f(x)|.
$$

The set of all continuous functions for which $||f|| < \infty$ is called $C(\mathcal{X})$. When is $C(\mathcal{X})$ a complete metric space with respect to the metric $d(f, g) = ||f - g||?$

35. Suppose $\{f_n(x)\}$ is a sequence of differentiable functions converging uniformly to $f(x)$. Give an example illustrating that $f(x)$ need not be differentiable. Give an example illustrating that the derivatives $f'_n(x)$ need not converge. Suppose that $f(x)$ is differentiable and $f'_n(x)$ converge point-wise, show that the equality $\lim_{n\to\infty} f'_n(x) = f'(x)$ need not hold.

36. Peano's existence theorem. Suppose f ∶ **R**² → **R** is continuous in a neighborhood of (x_0, y_0) . Then there exists a function $y(x)$, such that $y(x_0) = y_0$ and $y'(x) = f(x, y(x))$. *(Hint: construct Euler approximations*) *to the solution of this differential equation and show that they constitute an equicontinuous family of functions.)*