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BASIC CONCEPTS, SEQUENCES, CONVERGENCE

1. Every bounded increasing sequence in R is Cauchy (do not use completeness of R). Every bounded
sequence in Rn has a converging subsequence.

2. A metric space is compact if and only if it is complete and totally bounded, i.e., for every r > 0, it may
be covered by a finite number of open balls of radius r.

3. Every open set in R is a union of at most a countable number of disjoint open intervals.

4. Compute lim
n→∞

n√n without explicitly using that (ln n)/n → 0 as n →∞.

SERIES

5. Prove that e is irrational. (Hint: estimate approximation errors for partial sums of a series representation of
e or some appropriate quantity related to it.)

6. A conditionally convergent series (i.e., a non-absolutely convergent series whose partial sums still
converge) may be summed to any desired number by an appropriate rearrangement of its terms.

7. A sequence is called Cesàro summable if the arithmetic means of its partial sums converge. What is the
value of the sum 1− 1+ 1− 1+⋯ in Cesàro sense?

8. Find examples of converging and diverging series for which lim
n→∞

∣xn+1/xn∣ = 1 and lim
n→∞

n
√

∣xn∣ = 1.

9. If the coefficients of a power series are integers, infinitely many of which are nonzero (i.e., the series
is not a polynomial) then the radius of convergence of this series is at most 1.

10. Prove that the radii of convergence of power series
∞
∑
n=0

anxn and
∞
∑
n=1

nanxn−1 are the same.

11. Suppose all xn ≥ 0 and the series
∞
∑
n=0

xn converges. Set yn =
∞
∑

m=n
xm. Prove that

∞
∑
n=0

xn/yn diverges,

while
∞
∑
n=0

xn/
√

yn converges.

12. Prove that
∞
∑
n=1

xn converges iff
∞
∏
n=1

(1+ xn) converges.
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CONTINUITY

13. Prove that a map of a metric space into a metric space is continuous iff pre-image of every open set
is open. Show that if we replaced “pre-image” by “image,” the statement would be wrong.

14. An image of a compact set under a continuous map is compact.

15. Intermediate value theorem. An image of a connected set under a continuous map is connected.
(A set A is called connected if it cannot be minimally covered by two disjoint open sets.)

16. Level sets of continuous functions are closed.

17. A function continuous on a compact set A is also uniformly continuous on A.

18. A function f ∶ X → R is called convex if inequality,

f (αx1 + (1− α)x2) ≤ α f (x1) + (1− α) f (x2)

holds for all x1, x2 ∈ X and α ∈ [0, 1]. Prove that convex functions are continuous.

19. A function f ∶ X → Y is called Hölder continuous with exponent α ∈ [0, 1] if there exists some
constant C such that for all x1, x2 ∈ X ,

dY( f (x1), f (x2)) ≤ Cd α
X (x1, x2).

Prove that if α > 0, f is continuous; if α > 1, f is constant. (Hölder continuity with α = 1 is also referred to as
Lipschitz continuity.)

20. Construct a function f ∶ R → R which is continuous on all irrationals and discontinuous on all
rationals. Prove that the opposite is impossible.

DIFFERENTIABILITY

21. Is there a function, differentiable on all irrationals and discontinuous on all rationals?

22. Suppose some sublevel set, F = {x ∶ f (x) ≤ F}, of a differentiable function f ∶ X → R is compact, then
f achieves its minimum at some x ∈ F , and its derivative at x vanishes.

23. Prove Taylor’s theorem using the mean value theorem.

24. If partial derivatives of f ∶ Rn → R are bounded in a neighborhood of x, then f is continuous at x.

25. Find a function discontinuous at the origin whose partial derivatives at the origin are nevertheless
well-defined.

26. If there exists a function D f (x0) ∶ X → Y , such that for all x ∈ X ,

lim
ε→0

∥ f (x0 + εx) − f (x0) − ε D f (x0; x)∥
ε

= 0,

it is called the directional (Gâteaux) derivative of f at x0. Give examples of non-differentiable functions
which are Gâteaux-differentiable. (Hint: this may happen if, e.g., D f (x0; x) is not a linear map of x.) Suppose
D f (x0) exists and is linear, would this imply Fréchet differentiability as well?

27. Give example of a function whose derivative at 0 is equal to 1, though the function itself is not
invertible in any neighborhood of 0.
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INTEGRATION

28. A function is of bounded variation iff it may be represented as a difference of two monotone-
increasing functions.

29. Integral test for convergence of series. Suppose f ∶ R+ → R+ is monotone-decreasing, then

∞
∑
n=1

f (n) converges iff ∫
∞

1
f (x)dx converges.

30. Prove that if ∫
1

0
f (x)xn dx = 0 for all n = 0, 1, 2 . . . and f is continuous, then f ≡ 0 on [0, 1].

31. Show by direct computation that

∫
∞

1
(∫

∞

1

x2 − y2

(x2 + y2)2 dy)dx = −∫
∞

1
(∫

∞

1

x2 − y2

(x2 + y2)2 dx)dy = π

4
.

32. Let Ω be an open bounded subset of R2 with smooth boundary ∂ Ω. Prove that

Vol(Ω) = ∬
Ω

dx dy = ∮
∂ Ω

x dy = −∮
∂ Ω

y dx = 1
2 ∮∂ Ω

[x dy − y dx].

SEQUENCES OF FUNCTIONS

33. Partial sums of power series and their derivatives (of all orders) converge uniformly on compact
subsets of their open intervals of convergence.

34. For real-valued functions on a metric space X , define the supremum norm:

∥ f ∥ = sup
x∈X

∣ f (x)∣.

The set of all continuous functions for which ∥ f ∥ < ∞ is called C(X). When is C(X) a complete metric space
with respect to the metric d( f , g) = ∥ f − g∥?

35. Suppose { fn(x)} is a sequence of differentiable functions converging uniformly to f (x). Give an
example illustrating that f (x) need not be differentiable. Give an example illustrating that the derivatives
f ′n(x) need not converge. Suppose that f (x) is differentiable and f ′n(x) converge point-wise, show that the
equality limn→∞ f ′n(x) = f ′(x) need not hold.

36. Peano’s existence theorem. Suppose f ∶ R2 → R is continuous in a neighborhood of (x0, y0). Then
there exists a function y(x), such that y(x0) = y0 and y′(x) = f (x, y(x)). (Hint: construct Euler approximations
to the solution of this differential equation and show that they constitute an equicontinuous family of functions.)
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