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Solving a system of differential equations such as

I' = fl(xay)
i o= falz,y) 9

by finding a solution in terms of elementary functions is usually impossible.
More often than not, the analysis of such systems turns towards questions about
the the “overall behavior” of the system. Where are the fized points? (i.e.,
points (zg,yo) such that fi(zo,y0) = f2(zo,y0) = 0.) Do large sets of initial
conditions contract or expand? Do the equations describe motion in the plane
or something more complicated?

For example, consider the motion of a small water droplet on the surface of
a spherical glass ball determined by the effects of gravity and friction. After
placing the water droplet on the ball, the drop will begin to move along the
surface towards the lowest point of the sphere due to the influence of gravity.
(Surface tension and other effects keep the droplet attached to the ball if the
drop is small enough.) As the droplet approaches the bottom of the ball, gravity
tries to pull the droplet off of the ball rather than along the surface and the
surface tension of the droplet resists this causing its speed to slow and eventually
come to rest at the base of the ball. In theory, one could place the water droplet
on the very top of the sphere and it would not move at all.

Here, the motion of the droplet from an initial point on the surface of the
ball is described by a curve on a 2-dimensional sphere. The collection of all
possible trajectories of this system is called the flow of the system. Notice that
this system has two fixed points. The obvious one is at the south pole S of the
sphere and the other is at the north pole N of the sphere. In this system, a
droplet always falls away from N and towards S.

1. Try to sketch the trajectories of a flow on the sphere with 4 fixed points.
Try to sketch the trajectories of a flow different from the water droplet
example with only two fixed points. Try to draw the trajectories of a flow
on the sphere with only one fixed point. Do the same for an ellipsoid.

Our goal in this project is to relate the numbers and types of fixed points of
a system to the topology of the surface to which it is constrained.



1 Vector Fields on the Plane and Flows

The planar system (1) of differential equations gives rise to a map F: R? — R?
via F(z,y) = (f1(z,y), f2(z,y)) which can be used to analyze the flow of the
sytem. (Recall: The flow ®,(z,y) is describes the trajectory of the intial data
(z,y) at time ¢ subject to the system (1), i.e., %@t = (f1, f2) for all (z,y) € R%.)

2. Expand F in a Taylor series to show that system is approximated near a
fixed point by X = DFx, where X = (z,y) and DFY, is the Jacobian
matrix of F at the fixed point Xj.

Thus, the fundamental properties of the flow near a fixed point X, are
determined by the eigenvalues and eigenvectors of the Jacobian matrix DFx,.
Let A1, A2 denote the eigenvalues of DFx,. The following cases illustrate some
of the fundamental types of fixed points.

source The real parts of both A1, and A\ are pos- E.g., v 3¢+ y
" y=z+ 3y
itive.
saddle The real part of one eigenvalue is positive, E.g., :c i z
the real part of the other is negative. y=
center The real parts of both eigenvalues are E.g., r=y
y=x
Zero.
sink The real parts of both eigenvalues are E.g ¢ =—15z—5y
7 g =—by — 1bx

both negative.

3. Show that if the fixed point Xy is non-degenerate, i.e., det DFx, # 0, then
these are the only possibilities.

4. Find and classify the fixed points of the following vector fields, and plot
their phase portraits.

(a) F(z,y) = (y+y> —z + zy)
(b) F(z,y) = (z(3 — = — 2y),y(2 — = — y))

5. Let 2 = x + iy, Z = x — iy, and define vector fields on R? by
(&,9) = (Re(z"), Im(2"))

(&,9) = (Re(z"), Im(2%))
where k is a natural number. Classify the fixed points of these vector fields
and sketch phase portraits near the origin for £ = 0,1,2. Qualitatively
describe how increasing k changes the vector field near the origin.

6. The locus of points (z,y,2) € R? such that z% + y% + 22 = 1 is a unit
sphere centered at the origin in R3. Show that the vector field F'(z,y) =
(2z, 2y, % + y?) defines a tangent vector field on the unit sphere and find
the fixed points.



2 Euler Characteristic

A graph in R? is a finite set of distinct points {vy,vs,...,v,} called vertices
together with a collection of simple paths connecting pairs of (not necessarily
distinct) vertices called edges. A graph in R? is said to be planar if no edges
intersect. A graph is said to be connected if it is a path-connected subset of R2.
Let G be a planar graph in R?, and denote by V the set of vertices of G. Let
E denote the set of edges of G. It is a theorem that R? \ (V U E) is a union of
connected components which we will call faces. Let F' denote the set of faces of
G. Only one of the faces of G is an unbounded subset of R?, and all other faces
are contractible sets (that is, equivalent to a polygon/disk).

7. Let S be a finite set, and denote by |S| the cardinality of S. Prove that
|V|—|E|+|F| = 2 for any connected planar graph G. (Hint: Try induction
on the number of edges.)

The two-dimensional sphere as a topological space can be realized as the one-
point compactification of R2. Using this idea we can extend the notion of a
non-self-intersecting graph in R? to a non-self-intersecting graph on S$%. Note
that the one unbounded set now becomes a contractible set on S2.

8. As another example of a surface T consider the subset of R? defined as
the locus of points (z, y, 2) satisfying (y/22 + y2 —2)?+ 2?2 — 1 = 0. What
does this surface look like? (Hint: Try drawing level sets or change to
cylindrical coordinates.)

Notice that the complement in R3 of this surface T consists of two connected
components (an inside and an outside), making it possible to define a continuous
function from 7' — R? assigning the outward pointing normal vector to each
point of T'. A surface for which such a “normal” function is well-defined is said
to be orientable.

9. Convince yourself that topologically this surface is the same as the topo-
logical space obtained by removing two disjoint open disks from the sphere
and identifying the pair of boundary circles to the ends of a cylinder.

By an orientable surface of genus g we will mean a sphere with g cylinders
attached in this manner. Thus, the sphere is a surface of genus 0, and 7" in the
above example is a surface of genus 1.

10. The fact that |V| — |E| + |F| is the same for any connected planar graph
extends to the case of a graph on the sphere but does not extend to the
torus. Why? However if we define a connected graph G on a surface ¥4 of
genus g to be a collection of vertices and non intersecting edges such that
Xy \ (VUE) is a disjoint union of contractible sets then |V| — |E|+ |F| is
independent of the graph on X,. Prove this.



11. As the sum |V| — |E| + |F| is independent of the graph on %,, we can
define a number associated to X, via x(X4) = |V| — |E| + |F| using any
graph on ¥,. The number x(X,) is called the Euler Characteristic of the
surface. Compute this for ¥,. (Hint: Use the construction of ¥4 as the
two-dimensional sphere with g cylinders attached.)

3 The Index of a Fixed Point

Above, we studied the stability of fixed points. Here we define another property
of fixed points, which tells us “how the vector field winds about the fixed point”.

First, we consider vector fields in the plane R? and how they change along
C*' simple closed curves. A C' curve is a C' function c(t) : [0,1] — R?, and a
curve is closed if ¢(0) = ¢(1) and simple if it is otherwise not self-intersecting.
We will call a C! simple closed curve a C}, curve.

Given a vector field F = (p(z,y),q(z,y)) in R? and a CL, curve C, we can
calculate the total change A© in the angle

19, y)
p(z,y)

© = tan™

between the vector (p, ¢) and the z-axis as the point (z,y) transverses C exactly
once in the positive direction (the direction of increasing t).

Definition: Given a C!, curve C in R? and a continuously differentiable vector
field F in R? that has no fixed points on C, the integer

AB
(€)= 5%

is called the index of C' relative to the vector field F.

12. Show that if F = (p(z,y),q(z,y)), then

1 pdq — qdp
IF(C):%/; p2+q2 .

13. Compute the index of the following vector fields with respect to the unit
circle C' centered at the origin.

(a) F(z,y) = (z,y)

(b) F(xay) = (—CE, _y)

(c) F(z,y) = (—y,z) (Note that this vector field is tangent to circles
centered at the origin.)

(d) F(z,y) = (z,—y)

14. Prove the following properties of the index of a curve relative to a vector
field:



(a) Suppose that the curve C' can be continuously deformed into the
curve C’ without passing through a fixed point. Then, Ir(C) =
Ir(C").

(b) If C' does not enclose any fixed points, then Ir(C) = 0.

(Suggestion: Think about the vector field along curves contained in
small disks of radius r as r goes to 0 and use part (a).)

This last exercise allows us to make the following definition:

Definition: Let zg be a fixed point of a vector field F. The index of xo with
respect to F' is defined to be

Ip(zo) = Ir(C),

where C is any positively oriented C2, curve such that z; is the only fixed
point of F' contained in the interior of C. By positively oriented we mean
that the region enclosed by C is on the left-hand-side of someone walking
in the direction of increasing t.

15. Is the index Ip(zo) well defined?
16. Again let z = = + iy, Z = = — iy, and define vector fields on R? by
(&,9) = (Re(z*), Im(2"))
(,9) = (Re(z"), Im(2"))
where k is an integer. Compute the index of the fixed point at the origin.

17. Show that if a closed curve C' encloses a finite number of fixed points
Z1, ... Ty, then

Ir(C) = iIF(xj)-

(Suggestion: Recall the proof of a similar theorem in complex analysis!)

So far we have dealt with indices with respect to vector fields in the plane.
How can we define the index of a fixed point with respect to a vector field
tangent to a surface?

18. Consider again the unit sphere in R® with the tangent vector field F =
(2z, 2y, 2% + y?) and fixed points at the north N and south S poles. Re-
alizing the sphere in a neighborhood of S as the graph of a function
z = f(z,y), define the projection of the vector field near S to the plane
and compute the index of the fixed point of the projected vector field.
(Suggestion: Compute the index of the vector field relative to a small
circle about the origin.)



By similarly mapping a vector field on any surface to the plane and com-
puting the index of the projected vector field, we can define the index of a fixed
point for a vector field on a surface. But, notice that the orientation of the
surface becomes an issue.

19. On an orientable surface ¥ an orientation is determined by a normal vector
field as described above. Give a definition of a positively oriented curve
on X.

One must check that the index is independent of the chosen projection and
that the properties of indices for vector fields in R? also hold for indices relative
to vector fields on surfaces. Then we can make the following two definitions:

Definition: Let z( be a fixed point of a vector field F' on an oriented surface
3. The index of x¢ with respect to F is defined to be

Ir(zy) = Ir(C),

where C is any positively oriented C?, curve such that z is the only fixed
point of F' contained in the interior of C. The interior of C' is the region
to the left of someone walking in the positive direction on the curve.

Definition: The index of a surface S with respect to the vector field F' on S is
defined to be the sum

Ip(S) =Y In(z))
j=1
of the indices of the critical points x; of F' on S.

A priori, this definition depends on both the vector field F' and the surface
S. The Poincaré-Hopf Theorem says that the index is actually independent of
F!

4 The Poincaré-Hopf Index Theorem

Theorem: The sum Ir(S) of the indices of a vector field F' on a compact,
connected, orientable surface S is equal to the Euler characteristic of S.

Our strategy is to first prove the result for the sphere and then to use the
realization of X, as a sphere with g cylinders attached to extend the result to
compact, connected, orientable surfaces of arbitrary genus.

Let F be a vector field on a sphere.

20. Let p be a point on the sphere that is not a fixed point for F. Argue that
exists a C, curve C enclosing p and no fixed points of F such on C the
field F' is essentially constant.



21.

22.

The curve C divides the sphere into two connected components. Argue
that sphere minus the component A containing p is “the same” as a disk.
We will denote this space by S? \ A.

Our task is to show that the index of the curve C relative to F in S*\ A
is 2. The ideas needed to make this computation completely rigorous are
the heart and soul of the first year core-course Geometry/Topology, so
we can only give a hands-on approach here. Using a pen, draw a vector
field on a tennis ball (perhaps one of those whose flow you sketched in
problem 1). Find a fixed-point free region on your tennis ball and draw
a small circle. Turn the ball over, and track how many times the vector
field winds around as you traverse the curve.

This is very simliar to an old bar trick. The one where you take two quarters
and place them flat on the surface of a table so that they’re tangent at one point
and then roll one quarter around the boundary of the other keeping the other
fixed. The moving quarter revolves twice as it completes one trip around the
fixed quarter.

Thus, (with some faith) we’ve established that the index of the sphere is 2.
To prove the theorem, we’ll use the presentation of the general surface of genus
g as a sphere with g cyclinders attached and perform “surgery” to reduce to the
case of the sphere. The figure shows a surface of genus 5. The five cylinders
are indicated. Removing the cylinders and contracting their boundary circles
to points produces 6 disjoint spheres.

24.

25.
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Convince yourself that we can assume without loss of generality that the
vector field on the surface has no fixed points in each of the cylinders.

Argue that contracting the boundary circles of one of the cylinders to
points and surgically excising the resulting sphere from the new surface
introduces four fixed points, a source and a sink on the resulting sphere,
and a corresponding sink and source (respectively) on the surface. The
figure may be helpful.



26. Compute the index of the surgically altered surface in two ways. First,
count the index of the original surface plus the contributions from surgery.
Second, realize that the surgically altered surface is a collection of g + 1
spheres, each of which has index 2. Finish the “proof” of the theorem.



