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1 Introduction

In this project, we will describe the basic topology used in algebraic geome-
try, called the Zariski topology (named after Oscar Zariski). This project will
require some familiarity with basic commutative algebra. Some definitions
and a couple of useful facts are given in an appendix.

In some sense, algebraic geometry is a generalization of linear algebra. In
linear algebra, one studies simultaneous solutions to systems of linear equa-
tions. Algebraic geometry is based on studying simultaneous solutions to
systems of polynomial equations. When the equations have degree one in
each variable, algebraic geometry reduces to linear algebra. The solution
sets are planes in a vector space and are “flat” in a näıve sense. When the
polynomials have a higher degree, the geometry is much more rich.

The first exercise gives a couple of simple examples.

Exercise 1.1. Describe the solution set in R3 to the following systems of
equations:

1.

F1 = x2 + y2 + z2 = 1

F2 = x + y = 0
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2.

F1 = x2 + y2 − z2 = 1

F2 = x = 0

In these examples, the topology is natural because the solution sets are
subsets of R3. However, what if we are considering polynomials over a field
such as Fp or Qp (the field of p-adic numbers)?

In this project, we will define a topology on solution sets to polynomial
equations with coefficients in any field. The topology will be directly related
to the algebra of the polynomial ring. In fact, the definition will work for
any commutative ring with 1, not just a polynomial ring over a field. In this
way, tools in algebraic geometry are useful in areas such as algebraic number
theory.

2 Spec(R) as a Set

First we will translate solution sets of polynomials into ring-theoretic lan-
guage. This will lead to a definition of a set called Spec(R) (where R is a
commutative ring with 1). In the next section we will put a topology on
Spec(R), and then we will conclude by exploring features of this topology,
some of which are very unusual.

As a convention, all of our rings are commutative with 1, and 0 6= 1. (There
has been some work on generalizing these definitions to the zero ring.)

To motivate the definitions that follow, we again suppose we have a simulta-
neous solution set to a system of polynomial equations. Let the polynomials
be denoted F1, . . . , Fm. Let V ({F1, . . . , Fm}) be this solution set.

For our motivation, these polynomials have coefficients in an algebraically
closed field k = k and involve n indeterminants x1, . . . , xn. Then for each i =
1, . . . ,m, Fi ∈ k[x1, . . . , xn]. Then V ⊂ kn. Let (F1, . . . , Fm) ⊂ k[x1, . . . , xn]
be the ideal generated by F1, . . . , Fm.

Exercise 2.1. Show that if f ∈ (F1, . . . , Fm), then f ∈ k[x1, . . . , xn] satisfies
f(p) = 0 for every p ∈ V ({F1, . . . , Fm}).
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Exercise 2.2. Show that the converse is false by considering the one poly-
nomial F = x2 in C[x].

Exercise 2.3. Let V ⊂ kn be any subset. Show that

{f ∈ k[x1, . . . , xn]
∣∣ f(p) = 0 ∀p ∈ V }

is an ideal in k[x1, . . . , xn].

Given a subset V , the ideal defined in Exercise 2.3 is denoted I(V ).

Given an ideal J ⊂ k[x1, . . . , xn], define V (J) to be the set

V (J) := {p ∈ kn
∣∣ f(p) = 0 ∀ f ∈ J}.

Definition 2.4. A subset V ⊂ kn is an algebraic set if V = V (J) for some
ideal J ⊂ k[x1, . . . , xn].

Exercise 2.5. Let J = (F1, . . . , Fm) ⊂ k[x1, . . . , xn]. Show that V (J) =
V ({F1, . . . , Fm}).

Exercise 2.6. Show that J ⊂ I(V (J)), but this inclusion may be proper.

We would like to have a perfect dictionary between algebraic sets V ⊂ kn

and ideals J ⊂ k[x1, . . . , xn] given by J ↔ V (J). However, Exercise 2.2
shows that this fails: V (x) = V (x2) and in fact V (x) = V (xn) for any n.

This problem is remedied if we restrict to radical ideals.

Definition 2.7. Let I ⊂ R be an ideal in a ring. The radical of I is the set

√
I := {f ∈ R

∣∣ ∃l such that f l ∈ I}.

If I =
√

I, we say that I is a radical ideal.

Exercise 2.8. Show that if I ⊂ R is an ideal,
√

I is an ideal and I ⊂
√

I.

Show that
√√

I =
√

I, so that
√

I is radical.

Exercise 2.9. Let R = k[x]. Show that
√

(xn) = (x) for any n and conclude
that (x) is a radical ideal while (xn) is not a radical ideal for n > 0.

Exercise 2.10. Let V ⊂ kn be any set. Show that I(V ) is radical.
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There is a perfect dictionary between algebraic sets in kn and radical ide-
als in k[x1, . . . , xn]. This is a consequence of the following nontrivial theorem
called Hilbert’s Nullstellensatz.

Theorem 2.11. Let k be an algebraically closed field and I ⊂ k[x1, . . . , xn]
be an ideal. If f ∈ k[x1, . . . , xn] vanishes at every p ∈ V (I), then f r ∈ I for
some integer r > 0.

Corollary 2.12. If k is an algebraically closed field, there is a one-to-one
inclusion-reversing correspondence between algebraic sets V ⊂ kn and radical
ideals in k[x1, . . . , xn] given by V 7→ I(V ) and J 7→ V (J).

Exercise 2.13. Prove Corollary 2.12 using the Nullstellensatz.

Another consequence of the Nullstellensatz helps motivate the definition
of Spec(R).

Corollary 2.14. If k is an algebraically closed field, every maximal ideal
m ∈ k[x1, . . . , xn] has the form

m = (x1 − a1, . . . , xn − an)

where each ai ∈ k.

This gives a one-to-one correspondence between points (a1, . . . , an) ∈ kn

and maximal ideals m ∈ k[x1, . . . , xn].

Now consider again the system of polynomial equations given by

F1 = 0, . . . , Fm = 0

where Fi ∈ k[x1, . . . , xn] with k = k. Let J = (F1, . . . , Fm). Then we are
considering the algebraic set V (J). This set of points corresponds to a set of
maximal ideals in k[x1, . . . , xn]. Call this set M for now.

For any ring R, the set of all maximal ideals of R is denoted Max(R). This
is called the “max-spectrum” of R.

Let S = k[x1, . . . , xn]. Then M⊂ Max(S).

Exercise 2.15. Show that a maximal ideal m ∈ M if and only if J ⊂ m.
Use the correspondence theorem to conclude that M = Max(S/J).
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By Exercise 2.15, we have defined algebraic sets in terms of the intrinsic
algebra of a ring. This suggests that we should focus on Max(R).

The problem with Max(R) is that it doesn’t quite work functorially. In
addition to our sets being defined in terms of the algebra of rings, we would
like the functions between our sets to correspond to ring homomorphisms in
a natural way. This doesn’t work for maximal ideals.

Exercise 2.16. Give an example of a ring homomorphism f : R → S and a
maximal ideal m ⊂ S such that f−1(m) is not maximal in R.

The way to solve this is to enlarge our set from maximal ideals to prime
ideals.

Exercise 2.17. Show that if f : R → S is a ring homomorphism and p ⊂ S
is a prime ideal, then f−1(p) is prime.

The right set to consider is the set of all prime ideals of a ring R.

Definition 2.18. Let R be a ring. The prime spectrum of R is the set

Spec(R) := {p ⊂ R
∣∣ p is a prime ideal}

of prime ideals in R.

Exercise 2.17 shows that a ring homomorphism f : R → S gives rise to a
function f ∗ : Spec(S) → Spec(R) given by f ∗(p) = f−1(p).

Exercise 2.19. Identify the set Spec(R) for the following rings:

1. R = Z

2. R = k, k is any field

3. R = C[x]

4. R = R[x]

5. R = kn

6. R = Z/(143)
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3 A Topology on Spec(R)

Given a set of polynomial equations

F1 = 0, . . . , Fm = 0

we defined the ideal I ⊂ S = k[x1, . . . , xn] generated by the Fi. We defined
V (I) to be the points p ∈ kn where f(p) = 0 for all f ∈ I, which corresponded
to

Max(S/I) = {m ∈ Max(S)
∣∣ I ⊂ m}.

Since the right set to consider is the set of prime ideals of a ring, we replace
maximal ideals by prime ideals and now define

V (I) := {p ∈ Spec(S)
∣∣ I ⊂ p}.

Note that this definition makes sense for any ring S and ideal I ⊂ S. In
our case where we are looking at solutions to the polynomial equations, the
maximal ideals corresponding to the points in the solution set are contained
in V (I), but there are some other points in V (I) as well.

Exercise 3.1. Prove that for any ideal I ⊂ R in any ring R,

V (I) = Spec(R/I).

We will now define a topology on Spec(R). Define the closed sets of
Spec(R) to be precisely the sets V (I) for some ideal I ⊂ R. We need to show
that this is a topology.

Exercise 3.2. 1. Show that for two ideals I, J ⊂ S,

V (I) ∪ V (J) = V (IJ).

2. Show that for any set of ideals {Ij}j∈A,

⋂
j∈A

V (Ij) = V

(∑
j∈A

Ij

)
.

3. Find ideals I and J in R so that V (I) = ∅ and V (J) = Spec(R).
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4. Conclude that the set {V (I)
∣∣ I ⊂ R is an ideal} defines the closed

sets of a topology on Spec(R).

We can describe a basis for the open sets in the Zariski topology. Let
f ∈ R. Then the set

D(f) = {p ∈ Spec(R)
∣∣ f 6∈ p} = Spec(R) \ V (f)

is an open set. We call such sets the basic open sets of Spec(R) because
of the following exercise.

Exercise 3.3. Show that the basic open sets of Spec(R) form a basis for the
Zariski topology.

Let us consider again some examples.

Exercise 3.4. Identify the topology on Spec(R) for the following rings:

1. R = Z

2. R = k, k is any field

3. R = C[x]

4. R = R[x]

5. R = kn

We should also determine what functions between Spec(R) and Spec(S)
we want to consider. They should at least be continuous. If you are familiar
with category theory, we are identifying the morphisms in a category (called
the category of affine schemes).

Exercise 3.5. Recall that if f : R → S is a ring homomorphism, we get a
function of sets f ∗ : Spec(S) → Spec(R) given by f ∗(p) = f−1(p). Show that
this function is continuous. In general, a function g : Spec(S) → Spec(R) is
called a morphism if g = f ∗ for some ring homomorphism f : R → S.

We can redefine what algebraic geometry is in terms of prime spectra.

Definition 3.6. An affine algebraic variety is Spec(S/I) where S =
k[x1, . . . , xn], k is algebraically closed and I =

√
I.
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Algebraic geometry is the study of algebraic varieties and morphisms be-
tween algebraic varieties. The affine algebraic varieties are the building blocks
for algebraic varieties. Some authors require other conditions on Spec(S/I)
(such as irreducibility or separability, discussed further below). As usual,
you should be aware of any author’s conventions when reading their work.

Note that a system of polynomial equations in finitely many variables over
an algebraically closed field defines an ideal whose radical gives us an affine
algebraic variety. Similarly, given an affine algebraic variety we can consider
the system of polynomial equations given by generators of the ideal. There
are finitely many because the ring is Noetherian (which will be discussed a
little more below).

4 Exploring the Zariski Topology

In this section we will explore some of the more exotic features of the Zariski
topology. For example, there are single points that are not closed. The
Zariski topology is not Hausdorff, but there is a condition (called separabil-
ity) which replaces the Hausdorff condition. In some circumstances, every
pair of open sets has a nonempty intersection and every open subset is dense.
The Zariski topology on products is not the product topology. These strange
properties arise because we are forced to use prime ideals instead of maximal
ideals in our definition of Spec(R).

In addition to some of the more exotic features of the Zariski topology, we
will also look at connectedness and compactness considerations.

Exercise 4.1. Show that a singleton {p} ⊂ Spec(R) is closed if and only if
p ∈ Max(R) (these points p are called closed points). In particular, if R is
not a field, then there are singleton sets in Spec(R) that are not closed.

Exercise 4.2. Describe the closed points of Spec(R) for the following rings:

1. R = Z

2. R = k
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3. R = C[x]

4. R = R[x]

Exercise 4.3. Identify a point {p} that is dense in Spec(R) for the following
rings:

1. R = Z

2. R = k[x]

Such a point is called a generic point.

Exercise 4.4. Show that if a topological space X is Hausdorff, {p} ⊂ X is
closed for every p ∈ X. Conclude that the Zariski topology is not Hausdorff.

Exercise 4.5. A topological space X is called irreducible if any time X =
X1∪X2 where X1, X2 ⊂ X are closed, then either X1 = X or X2 = X. Note
that this notion is useless outside of algebraic geometry. Find a necessary
and sufficient condition on an ideal I ⊂ R for Spec(R/I) to be irreducible.

Exercise 4.6. For a topological space X, prove that the following are equiv-
alent:

1. X is irreducible.

2. Any two nonempty open subsets U, V ⊂ X have a nonempty intersec-
tion.

3. Any nonempty open subset U is dense in X.

Conclude that an irreducible topological space is not Hausdorff. In particular,
an irreducible affine algebraic variety is not Hausdorff.

Since the ring S = k[x1, . . . , xn] is of such importance, we give special
notation to Spec(S). Define

An
k := k[x1, . . . , xn].

This is called affine n-space. If the field k is understood it is often omitted
from the notation.
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Exercise 4.7. Show that the closed points of A2 are the same as the closed
points of A1 × A1, but the topology on A2 is not the product topology on
A1 × A1 (even for the subspace topology on the closed points).

Remark 4.8. If you are familiar with the tensor product, the product
Spec(R) × Spec(S) is defined to be Spec(R ⊗ S), which does not carry the
product topology but does satisfy the appropriate universal property. Note
that I did not specify what we are tensoring R and S over. If you like, think
of it as R ⊗Z S, but in other circumstances you will use something besides
Z. This goes to categorical considerations that I will not elaborate on here.

We can define a condition on Spec(R) that plays a role in algebraic ge-
ometry analogous to that played by the Hausdorff condition in analysis.

Exercise 4.9. Show that a topological space X is Hausdorff if and only if
the diagonal

∆ = {(p, q) ∈ X ×X
∣∣ p = q}

is closed in the product topology on X ×X.

Definition 4.10. The topological space Spec(R) is separated if the diago-
nal

∆ ⊂ Spec(R)× Spec(R)

is closed.

Remark 4.11. Do not confuse this with a separable topological space!

Exercise 4.12. Show that An is separated (for simplicity you may consider
only closed points if you like).

Exercise 4.13. For those familiar with tensor products and universal prop-
erties, explain precisely what the diagonal ∆ should be in the definition of a
separated Zariski topology.

Recall that if S1 and S2 are rings, the product ring S1 × S2 is the Carte-
sian product with addition and multiplication defined component-wise, and
identity (1S1 , 1S2).

Exercise 4.14. Show that Spec(R) is disconnected if and only if there are
rings S1, S2 such that R = S1 × S2. Note that this explains why Spec(S1)×
Spec(S2) 6= Spec(S1 × S2).
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Finally, let us consider compactness. To keep things simple, we will only
consider Noetherian rings. Let us recall the definition.

Exercise 4.15. Let R be a ring. Prove that the following are equivalent
(you will need Zorn’s Lemma):

1. Every ideal I ⊂ R is finitely generated.

2. Every non-empty set of ideals has a maximal element (with respect to
a partial ordering by inclusion).

3. The ring R satisfies the ascending chain condition: If

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ In+1 ⊂ · · ·

then there is k such that

Ik = Ik+1 = · · · = Il = · · ·

for all l > k.

Such a ring is called a Noetherian ring.

Exercise 4.16. Prove that a field is Noetherian. More generally, prove that
every PID is Noetherian.

A theorem, called the Hilbert basis theorem, states that if R is Noethe-
rian, so is R[x]. By induction, k[x1, . . . , xn] is Noetherian.

Exercise 4.17. Prove that if R is Noetherian and I ⊂ R is an ideal, R/I is
Noetherian.

In algebraic geometry, where we consider rings of the form k[x1, . . . , xn]/I,
one can see that being Noetherian is a mild assumption.

Exercise 4.18. Prove that if R is Noetherian, Spec(R) is compact.

Note that in algebraic geometry, we use the term quasi-compact instead
of compact. This is because the term compact is typically used when the
topological spaces are Hausdorff.

11



5 Concluding Remarks

In your core course on geometry and topology, you will study topological
spaces called manifolds. Manifolds are topological spaces constructed by
“patching together” open subsets of Rn.

In algebraic geometry, we study algebraic varieties which, analogous to mani-
folds, are constructed by “patching together” affine algebraic varieties Spec(R),
where the rings may vary! The key difference is that the role of analysis in
differential geometry is played by algebra for algebraic geometry.

If one constructs manifolds using Cn instead of Rn, one can define com-
plex manifolds. Since C is algebraically closed, the Nullstellensatz holds over
C and it is therefore a natural field to use in algebraic geometry. It is a
natural question to compare results for algebraic varieties over C to complex
manifolds. This is the subject of Serre’s celebrated GAGA theorem. Here,
GAGA stands for the French translation of “Algebraic Geometry Analytic
Geometry.”
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6 Appendix: Commutative Algebra Basics

This appendix is merely to remind the reader of the basic definitions and
facts from commutative algebra that are useful in this project. It contains
no proofs, no examples, and only a couple of very trivial exercises.

Definition 6.1. A commutative ring with identity R is set R together
with two binary operations + and × such that

1. (R, +) is an abelian group with identity 0 ∈ R,

2. × is associative: (a× b)× c = a× (b× c) for every a, b, c ∈ R,

3. × is commutative: a× b = b× a for all a, b ∈ R,

4. + and × are distributive: a×(b+c) = (a×b)+(a×c) for all a, b, c ∈ R,
and

5. there is an element 1 ∈ R such that 0 6= 1 and a × 1 = a for every
a ∈ R.

The result of the binary operation a× b is usually just written ab.

Definition 6.2. A ring homomorphism is a function f : R → S of sets
from the ring R to the ring S such that

1. f(a + b) = f(a) + f(b) for all a, b ∈ R,

2. f(ab) = f(a)f(b) for all a, b ∈ R,

3. f(0) = 0, and

4. f(1) = 1.

Definition 6.3. An ideal I ⊂ R is a subset of R such that

1. (I, +) is a subgroup of (R, +), and

2. rI ⊂ I for every r ∈ R.

Definition 6.4. Let S = {sa}a∈A be an arbitrary subset of R. The ideal
generated by S, denoted (S), is the set

(S) =

{∑
a∈S

rasa

∣∣ ra ∈ R, ra = 0 for all but finitely many a ∈ A

}
.
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Exercise 6.5. Prove that (S) is an ideal.

Definition 6.6. If I ⊂ R is an ideal and I can be written as I = (S) where
S is finite, we say that I is finitely generated.

Definition 6.7. If I, J ⊂ R are ideals, then the product IJ is the set of all
finite sums of elements of the form ab with a ∈ I, b ∈ J .

Exercise 6.8. Prove that IJ is an ideal.

Definition 6.9. If {Ia}a∈A is a set of ideals, then

∑
a∈A

Ia =

(⋃
a∈A

Ia

)
.

Definition 6.10. If I ⊂ R is an ideal then the quotient R/I is the set of
cosets {r + I

∣∣ r ∈ R} endowed with binary operations

(r + I) + (s + I) = (r + s) + I

(r + I)(s + I) = rs + I.

Remark 6.11. Since I is an ideal, the binary operations are well defined
on cosets and give R/I the structure of a commutative ring with additive
identity 0 + I and multiplicative identity 1 + I.

Definition 6.12. A commutative ring with identity R is an integral do-
main if every time r, s ∈ R with rs = 0, either r = 0 or s = 0.

Definition 6.13. An element r ∈ R is a unit if there is some s ∈ R such
that rs = 1.

Exercise 6.14. Prove that if r ∈ R is a unit, then (r) = R.

Definition 6.15. An nonzero element r ∈ R that is not a unit is irreducible
if whenever r = ab for a, b ∈ R, either a or b is a unit in R.

Definition 6.16. A nonzero element r ∈ R is prime if r is not a unit and
whenever p

∣∣ab in R then either p
∣∣a or p

∣∣b.
Proposition 6.17. If R is an integral domain, then a prime element is always
irreducible.
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Definition 6.18. A unique factorization domain (UFD) is an integral
domain R such that for every nonzero element r ∈ R that is not a unit, we can
write r = p1p2 · · · pn where pi is an irreducible in R and the decomposition
is unique up to multiplication by units.

Proposition 6.19. If R is a UFD, an element r ∈ R is irreducible if and
only if r is prime.

Definition 6.20. An ideal I ⊂ R is a principal ideal if there is f ∈ R such
that I = (f).

Definition 6.21. A Principal Ideal Domain (PID) is an integral domain
in which every ideal is principal.

Proposition 6.22. A PID is a UFD.

Corollary 6.23. An element r in a PID is prime if and only if r is irreducible.

Definition 6.24. A commutative ring with identity R is a field if R is an
integral domain and every nonzero element r ∈ R is a unit.

Exercise 6.25. An integral domain R is a field if and only if there is exactly
one proper ideal.

Remark 6.26. If R is a field, we typically denote it by k instead of R.

Definition 6.27. A field k is algebraically closed if every polynomial
f ∈ k[x] has a root in k.

Definition 6.28. An ideal p ⊂ R is a prime ideal if p ⊂ R is a proper
subset and whenever r, s ∈ R with rs ∈ p, wither r ∈ p or s ∈ p.

Exercise 6.29. An element p ∈ R is prime if and only if (p) is a prime ideal.

Exercise 6.30. The ideal p ⊂ R is a prime ideal if and only if R/p is an
integral domain.

Definition 6.31. An ideal m ⊂ R is a maximal ideal if m ⊂ R is a proper
subset and if I ⊂ R is an ideal with m ( I ⊂ R, I = R.

Exercise 6.32. The ideal m ⊂ R is a maximal ideal if and only if R/m is a
field.
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Exercise 6.33. Every maximal ideal is a prime ideal.

Proposition 6.34. If R is a PID, then a proper ideal (f) ⊂ R is prime if
and only if f is prime if and only if f is irreducible.

Proposition 6.35. If R is a PID, every nonzero prime ideal is a maximal
ideal.

We conclude with the very useful correspondence theorem.

Theorem 6.36. Let I ⊂ R be a proper ideal and let π : R → R/I be the
natural map π(r) = r + I. There is a natural inclusion preserving bijection
ϕ from the set of all ideals J ⊂ R containing I and the set of all ideals in
R/I given by ϕ(J) = π(J). In addition, p ⊂ R is prime if and only if ϕ(p) is
prime, and m ⊂ R is maximal if and only if ϕ(m) is maximal.
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