Integration Workshop 2003 Project on Harmonic Analysis and the Distribution of Numbers

Arlo Caine

Fejer's Theorem

Consider the circle T as the quotient space $\mathbb{R}/2\pi\mathbb{Z}$, and let $f: \mathbb{T} \to \mathbb{C}$ be a Riemann integrable function. Equivalently, f is a Riemann integrable function $f: \mathbb{R} \to \mathbb{C}$ with period 2π . The Fourier coefficients of f are defined by

$$
\hat{f}(r) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-irt} dt = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)e^{-irt} dt.
$$

Let $S_n(f, t)$ be given by

$$
S_n(f,t) := \sum_{r=-n}^n \hat{f}(r)e^{irt}.
$$

Fourier believed that $S_n(f, t) \to f(t)$ as $n \to \infty$ for any Riemann integrable function f . This belief is incorrect; we now know that there are many wild and crazy Riemann integrable functions that do not have this behaviour. The mathematician Du Bois-Reymond produced the first counterexample. Researchers turned to the question, "Do the Fourier coefficients determine the function f ?" In other words, given $\hat{f}(r)$ for each $r \in \mathbb{Z}$, can we find $f(t)$ for $t \in \mathbb{T}$? Fejer answered this question in the affirmative and the first part of this project is to prove Fejer's result.

1. Let $\{s_n\}$ be a sequence of complex numbers. The Cesàro limit of s_n is given by

$$
\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} s_k.
$$

In words, the Cesàro limit is the limit, as $n \to \infty$, of the average of the first *n* terms of the sequence. Prove that if $s_n \to s$ as $n \to \infty$, then the Cesàro limit of s_n is also s.

2. The Cesàro limit may exist even if lim s_n does not. The sequence $\{(-1)^n\}$ does not have a limit in the usual sense, but the Cesaro limit does exist. Find the Cesaro limit of this sequence.

For a Riemann integrable function f , we define

$$
\sigma_n(f, t) := \frac{1}{n+1} \sum_{j=0}^n S_j(f, t).
$$

Hence, $\lim_{n \to \infty} \sigma_n(f, t)$ is the Cesàro limit of $S_n(f, t)$.

Theorem 1 (Fejer) Suppose $f: \mathbb{T} \to \mathbb{C}$ is Riemann integrable and continuous at t. Then $\lim_{n\to\infty} \sigma_n(f,t) = f(t)$. Further, if f is continuous on all of \mathbb{T} , then the convergence is uniform.

The next few problems will guide you through a proof of Fejer's Theorem.

3. First establish the identity

$$
\sigma_n(f, t) = \sum_{r = -n}^n \frac{n + 1 - |r|}{n + 1} \hat{f}(r) e^{irt}.
$$

Hint: Use induction.

4. Now, show that

$$
\sigma_n(f,t) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t-y) K_n(y) \, dy,
$$

where

$$
K_n(s) := \sum_{r=-n}^{n} \frac{n+1-|r|}{n+1} e^{irs}.
$$

Thus the behavior of the Cesaro sums of the Fourier series is dictated by the behavior of the integrals involving the functions $K_n(s)$.

5. Prove that if $s \neq 0$ then

$$
K_n(s) = \frac{1}{n+1} \left(\frac{\sin \frac{(n+1)s}{2}}{\sin \frac{s}{2}} \right)^2.
$$

Hint: Notice that

$$
\sum_{r=-n}^{n} (n+1-|r|) e^{irs} = \left(\sum_{k=0}^{n} e^{i(k-n/2)s}\right)^2.
$$

- 6. Sketch $K_n(s)$ for a few values of n.
- 7. Prove that $K_n(s)$ has the following properties:
	- (a) $K_n(0) = n + 1$,
	- (b) $K_n(s) \geq 0$ for all $s \in \mathbb{T}$,
	- (c) $K_n(s) \to 0$ uniformly outside $[-\delta, \delta]$ for all $\frac{1}{4} > \delta > 0$, and
	- (d) $\frac{1}{2\pi} \int_{\mathbb{T}} K_n(s) ds = 1$ for each $n = 0, 1, 2, ...$
- 8. Use these properties of $K_n(s)$ to complete the proof of Fejer's Theorem.

Weyl's Equidistribution Theorem

Let γ be an irrational real number, and consider the sequence $\{2\pi r\gamma\}$ in T. Because γ is irrational, no element of $\mathbb T$ appears more than once in this sequence. The following theorem says that by "sampling" a *continuous* function f on \mathbb{T} at the points of this sequence, and taking a Cesaro limit, we can find the integral of f .

Theorem 2 (Weyl's Equidistribution Theorem) Let $f: \mathbb{T} \to \mathbb{C}$ be a continuous function, and γ a real irrational number. Then

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} f(2\pi r \gamma) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t) dt.
$$

Moreover, if $0 \le a \le b \le 1$, then

$$
\lim_{n \to \infty} \frac{1}{n} \# \left\{ r \mid 1 \le r \le n, \quad 2\pi r \gamma \in [2\pi a, 2\pi b] \right\} = (b - a).
$$

We shall now prove this theorem. Fix an irrational real number γ . Let $C(\mathbb{T})$ denote the space of continuous functions on \mathbb{T} . For each $n = 1, 2, \ldots$, we define an operator $G_n: C(\mathbb{T}) \to \mathbb{C}$ by

$$
G_n(f) = \frac{1}{n} \sum_{r=1}^n f(2\pi r \gamma) - \frac{1}{2\pi} \int_{\mathbb{T}} f(t) dt.
$$

- 9. Show that G_n is a linear transformation on $C(\mathbb{T})$.
- 10. For each $s \in \mathbb{Z}$, show that $\lim_{n \to \infty} G_n(e^{ist}) = 0$.
- 11. A trigonometric polynomial is any finite sum of the form

$$
P(t) = \sum_{s=-m}^{m} a_s e^{ist}
$$

.

Show that $\lim_{n\to\infty} G_n(P(t)) = 0$ for any trigonometric polynomial $P(t)$.

- 12. Prove that $\lim_{n\to\infty} G_n(f) = 0$ for any continuous function f. This proves the first part of Weyl's Theorem. Hint: Show that any continuous function on T can be approximated by trigonometric polynomials.
- 13. Construct continuous functions f_+ and f_- such that
	- (a) $f_+(t) \geq 1 \geq f_-(t)$ for all $t \in [2\pi a, 2\pi b]$.
	- (b) $f_{+}(t) \ge 0$ for all $t \in T$, $f_{-}(t) = 0$ for all $t \notin [2\pi a, 2\pi b]$.
	- (c) $(b-a)+\varepsilon \geq \frac{1}{2\pi} \int_{\mathbb{T}} f_+(t) dt$
	- (d) $\frac{1}{2\pi} \int_{\mathbb{T}} f_-(t) dt \ge (b a) \varepsilon$
- 14. Use properties (a) and (b) to show that

$$
\sum_{r=1}^{n} f_{-}(2\pi r\gamma) \leq # \left\{ r \mid 1 \leq r \leq n, \quad 2\pi r\gamma \in [2\pi a, 2\pi b] \right\} \leq \sum_{r=1}^{n} f_{+}(2\pi r\gamma).
$$

Use this result to prove the second part of Weyl's Theorem.