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Fejer’s Theorem

Consider the circle T as the quotient space R/2πZ, and let f : T → C be a
Riemann integrable function. Equivalently, f is a Riemann integrable func-
tion f : R → C with period 2π. The Fourier coefficients of f are defined by

f̂(r) =
1
2π

∫ 2π

0

f(t)e−irt dt =
1
2π

∫
T

f(t)e−irt dt.

Let Sn(f, t) be given by

Sn(f, t) :=
n∑

r=−n

f̂(r)eirt.

Fourier believed that Sn(f, t) → f(t) as n → ∞ for any Riemann integrable
function f . This belief is incorrect; we now know that there are many wild and
crazy Riemann integrable functions that do not have this behaviour. The math-
ematician Du Bois-Reymond produced the first counterexample. Researchers
turned to the question, “Do the Fourier coefficients determine the function f?”
In other words, given f̂(r) for each r ∈ Z, can we find f(t) for t ∈ T? Fejer
answered this question in the affirmative and the first part of this project is to
prove Fejer’s result.

1. Let {sn} be a sequence of complex numbers. The Cesàro limit of sn is
given by

lim
n→∞

1
n + 1

n∑
k=0

sk.

In words, the Cesàro limit is the limit, as n → ∞, of the average of the
first n terms of the sequence. Prove that if sn → s as n → ∞, then the
Cesàro limit of sn is also s.

2. The Cesàro limit may exist even if lim sn does not. The sequence {(−1)n}
does not have a limit in the usual sense, but the Cesàro limit does exist.
Find the Cesàro limit of this sequence.

For a Riemann integrable function f , we define

σn(f, t) :=
1

n + 1

n∑
j=0

Sj(f, t).

Hence, lim
n→∞

σn(f, t) is the Cesàro limit of Sn(f, t).
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Theorem 1 (Fejer) Suppose f : T → C is Riemann integrable and continuous
at t. Then lim

n→∞
σn(f, t) = f(t). Further, if f is continuous on all of T, then the

convergence is uniform.

The next few problems will guide you through a proof of Fejer’s Theorem.

3. First establish the identity

σn(f, t) =
n∑

r=−n

n + 1− |r|
n + 1

f̂(r)eirt.

Hint: Use induction.

4. Now, show that

σn(f, t) =
1
2π

∫
T

f(t− y)Kn(y) dy,

where

Kn(s) :=
n∑

r=−n

n + 1− |r|
n + 1

eirs.

Thus the behavior of the Cesàro sums of the Fourier series is dictated by
the behavior of the integrals involving the functions Kn(s).

5. Prove that if s 6= 0 then

Kn(s) =
1

n + 1

(
sin (n+1)s

2

sin s
2

)2

.

Hint: Notice that

n∑
r=−n

(
n + 1− |r|

)
eirs =

(
n∑

k=0

ei(k−n/2)s

)2

.

6. Sketch Kn(s) for a few values of n.

7. Prove that Kn(s) has the following properties:

(a) Kn(0) = n + 1,

(b) Kn(s) ≥ 0 for all s ∈ T,

(c) Kn(s) → 0 uniformly outside [−δ, δ] for all 1
4 > δ > 0, and

(d) 1
2π

∫
T Kn(s) ds = 1 for each n = 0, 1, 2, ....

8. Use these properties of Kn(s) to complete the proof of Fejer’s Theorem.

Weyl’s Equidistribution Theorem

Let γ be an irrational real number, and consider the sequence {2πrγ} in T.
Because γ is irrational, no element of T appears more than once in this sequence.
The following theorem says that by “sampling” a continuous function f on T at
the points of this sequence, and taking a Cesàro limit, we can find the integral
of f .

2



Theorem 2 (Weyl’s Equidistribution Theorem) Let f : T → C be a con-
tinuous function, and γ a real irrational number. Then

lim
n→∞

1
n

n∑
r=1

f(2πrγ) =
1
2π

∫
T

f(t) dt.

Moreover, if 0 ≤ a ≤ b ≤ 1, then

lim
n→∞

1
n

#
{

r
∣∣∣ 1 ≤ r ≤ n, 2πrγ ∈ [2πa, 2πb]

}
= (b− a).

We shall now prove this theorem. Fix an irrational real number γ. Let C(T)
denote the space of continuous functions on T. For each n = 1, 2, . . . , we define
an operator Gn : C(T) → C by

Gn(f) =
1
n

n∑
r=1

f(2πrγ)− 1
2π

∫
T

f(t) dt.

9. Show that Gn is a linear transformation on C(T).

10. For each s ∈ Z, show that lim
n→∞

Gn(eist) = 0.

11. A trigonometric polynomial is any finite sum of the form

P (t) =
m∑

s=−m

ase
ist.

Show that lim
n→∞

Gn (P (t)) = 0 for any trigonometric polynomial P (t).

12. Prove that lim
n→∞

Gn(f) = 0 for any continuous function f . This proves the
first part of Weyl’s Theorem. Hint: Show that any continuous function
on T can be approximated by trigonometric polynomials.

13. Construct continuous functions f+ and f− such that

(a) f+(t) ≥ 1 ≥ f−(t) for all t ∈ [2πa, 2πb].

(b) f+(t) ≥ 0 for all t ∈ T , f−(t) = 0 for all t 6∈ [2πa, 2πb].

(c) (b− a) + ε ≥ 1
2π

∫
T f+(t) dt

(d) 1
2π

∫
T f−(t) dt ≥ (b− a)− ε

14. Use properties (a) and (b) to show that

n∑
r=1

f−(2πrγ) ≤ #
{

r
∣∣∣ 1 ≤ r ≤ n, 2πrγ ∈ [2πa, 2πb]

}
≤

n∑
r=1

f+(2πrγ).

Use this result to prove the second part of Weyl’s Theorem.
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