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Part 1

Definition: A C*-algebra U is a complex algebra equipped with a norm | - ||,
with respect to which U is complete as a topological space, together with a
bijective conjugate linear mapping *: U — U, called the adjoint, such that for
each A,B €U and )\ € C,

(A)* = A, (A+ B)* = A* + B*, (AB)* = B*A*, (\A)* = \A*,

IAB| < ||A||||B]|, and the C*-identity, || A*A| = ||A||?, holds.

Let X be a compact Hausdorff topological space and let C(X) denote the con-
tinuous complex valued functions on X. These next few problems prove that
C(X) is a commutative unital (i.e. it has a multiplicative identity) C* algebra
with the % operation given by complex conjugation.

1.

Show that C(X) is a complex vector space under pointwise addition, i.e.
(f +9)(x) = f(x) + g(x), and in fact is a C-algebra when equipped with
pointwise multiplication.

Show that the map f — f, where f denotes the complex conjugate of f,
is an isometry with respect to the max norm on C(X),

|7l = mas | ().

Prove that [| fgllec < [[fllccllglloo-

Prove that C(X) is complete with respect to the metric induced from the
norm | - ||so-

Let A and B be unital C* algebras. A *-homomorphism ¢: A — B isa C-
algebra homomorphism that commutes with the operation of conjugation,
ie.



for each a € A. Let ¢: C(X) — C be a non-zero *-homomorphism and
show that ¢ is given by evaluation at some x € X, i.e. there exists r € X
such that

o(f) = f(x)
for each f € C(X). Prove this by contradiction as follows: Suppose
¢: C(X) — C is a non-zero C-algebra homomorphism, but ¢ # eval, for
all z € X.
(a) For each x € X, find g, € C(X) such that g, € ker ¢, but g,(z) # 0.
(b) Show that |g.|? is in the ideal ker ¢.
(¢) Use the compactness of X to show that the kernel of ¢ is C'(X).

Hence, we have a 1 —1 correspondence between the points of X and the nonzero
C-algebra homomorphisms C(X) — C.
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Our goal now is to show that this is much more than a correspondence — it is a
homeomorphism of compact Hausdorff spaces. In order to do this, we must put
a topology on Spec C(X). The set Spec C(X) is actually a subset of a much
larger space.

Let A be a commutative unital C*-algebra. The dual space of A, denoted AV,
is the set of continuous complex linear maps f: A — C. Clearly, Spec A C AV.
There is a topology on AV, called the weak-* topology. This topology has a
basis of open sets, each depending on 3 parameters, ¢, € and S. The basis is the
collection of open sets

N(¢p:Se):= {weAv lw(a) — ¢(a)] <6Va€S}.

Here, ¢ € AV, ¢ > 0, and S is a finite subset of A. Hence, G C AV is open if
and only if for each a € G there exists N'(b: S, ¢€), an element of the basis, such
that a e N(b: S,¢) C G.

7. Prove that this topology on AV is Hausdorff.

Consider any w € AY. Because w is linear, w(0) = 0. Also, w is continuous, so
there exists an open neighborhood U of 0 € A such that |w(a)| < 1 for every
a € U. Because U is an open set in the metric space A, there exists 6 > 0 such
that the ball of radius § centered at 0 is contained in U.
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Now, for every a € A,
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independent of a € A. Define

o] = sup £
a0 |lall

So there is a bound for

to be the best possible bound.
8. Show this is a norm on AV.

9. Show that Spec A is closed. Hint: Prove the complement is open in
the weak-* topology. Notice if ¢ ¢ Spec A, then ¢ = 0 or there ex-
ist a,b € A such that ¢(a)d(b) # ¢(ab). In the second case, show that
N (¢:{a,b,ab},€) lies in the complement of Spec A for some € > 0.

10. Show that Spec C'(X) is contained in the ball of radius 1 in C'(X)V.

It is a theorem of Banach and Alaoglu that the unit ball in AV is compact in
the weak-* topology.

11. Argue that Spec C(X) is a compact Hausdorff space.

Define ®: SpecC'(X) — X by ®(eval,) = x. To show that ® is continuous we
will need the following Lemma.

Theorem 1 (Uryshon’s Lemma) Let Z be a compact Hausdorff space, and
let z € Z andY C Z be closed, with z ¢ Y. Then there exists a continuous
function f: Z — [0,1] such that f(z) =1 and f(y) =0 for ally €Y.

12. Show that ® is continuous. Hint: Let C be a closed set in X. For any
y ¢ C, consider the neighborhood N (evaly : {f,},3), where f, should be
inspired from Uryshon’s Lemma.

13. Prove that a continuous bijection between compact Hausdorff spaces is a
homeomorphism. What can you conclude?

Part 11

We now want to prove a similar statement for C*-algebras, namely that A is
*_isomorphic to C(Spec A) for any commutative unital C*-algebra A. The
Gelfand transform of x € A is given by



% :SpecA— C z(0) :=4(x), L€ SpecA.

The next series of exercises establishes that the Gelfand transform is an isomet-
ric *-isomorphism of C*-algebras.

Let A* be the set of invertible elements of A. For any x € A, the spectrum of
x is the set
o(x):={AeCA 14—z ¢ A}

Here, 14 denotes the identity element of A.
14. Fix x € A. Prove that the range of Z is o(x).
Notice that we can consider “as a map A — C(Spec A).

15. Show that "is a homomorphism of C-algebras. We will show that it is in
fact a *-homomorphism in what follows.

16. Prove that ||Z]|c < ||z|| for each x € A.

This proves that "is a continuous map, because it is linear.

One can show, analogous to the classical Spectral Theorem in linear algebra,
that for self-adjoint = € A (that is, * = x), one has that o(z) C R. The proof
involves a little more functional analysis than we can present here, so we omit.

17. Show that s A — C(Spec A) is a *-homomorphism, that is & = z*. Hint:
Notice that if x = x*, then T is real valued. Decompose x as a + ib, where
a 1s self-adjoint, and b is skew-adjoint, meaning b = —b*.

The spectral radius of x € A is

r(z):= sup |A|.
Xeo(x)

One can show that )
lim_[|2" [~
n—oo
always exists and is equal to r(z).

18. Use this formula to show that if = is self-adjoint, then r(x) = ||z||. Hint:
Consider =" .

19. Prove that if x is self-adjoint, then ||Z|c = ||z

20. Use the previous exercise to prove that for every x € A, ||Z| = |z,
that is, "is an isometry. Hint: Use the C*-identity, and recall that x*x is
self-adjoint.



21. Argue that "is injective. Hint: This follows immediately from the previous
exercise and the fact that™ is a homomorphism.

The last remaining obstacle to proving Gelfand’s theorem is the surjectivity of".
To do this, we will use the Stone-Weierstrass theorem.

Theorem 2 (Stone-Weierstrass) Let Z be a compact Hausdorff space, and
let B be a closed *-subalgebra of continuous functions on Z that separate points
of Z, and contains the constant function, then B = C(Z).

22. Prove that A := {Z|z € A} separates the points of Spec A.
From this, we see that " is surjective if its range is closed.

23. The standard proof that the range of "~ uses nets and so is a little beyond
the scope of the project. Hints for another proof may be available during
the workshop.

This completes the theorem of Gelfand, giving the correspondence for commu-
tative unital C*-algebras:

A ~~~ Spec A

§

- v
C(Spec A)
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24. Cousider the unit interval [0, 1] as a subset of R with the subspace topology.
Construct a topological model for the the quotient space Y of [0, 1] where
by the endpoints of the interval are identified.

25. According to the program above, the study of [0, 1] should be equivalent
to the study of the algebra of continuous, complex valued functions on
[0,1]. In fact, the quotient space corresponds to a subalgebra of C' ([0, 1]).
Which subalgebra is it? Can you extrapolate a general statement from
this example describing the subalgebra associated to a quotient space?

26. Let Y denote the space of binary sequences y = (y1,¥2,¥s,...), where
yi € {0,1} for each i € N. Show that d(y,z) = > 27 F|yr — 2x| defines a
metric on Y.

27. Define a relation on Y as follows. For each y,z € Y, y ~ z if and only if
there exists k € N such that y; = z; for each j > k. Check that ~ defines
an equivalence relation on Y. Let y € Y, and define the orbit of y under
the relation ~ to be {z € Y|y ~ z}. Show that for y € Y, the orbit of y
is a dense set in Y with respect to d.



28. Describe the topological quotient space X of Y for which all the elements
of an orbit are identified for each orbit. Is it Hausdorff? Following the
prescription you developed above, determine the subalgebra of C(Y) as-
sociated to X up to isomorphism. Does it accurately describe the space
X7

The principles studied in this project show that the study of compact Hausdorff
spaces is equivalent to the study of commutative unital C*-algebras. These
ideas have been generalized in modern mathematics in two important ways.
In algebraic geometry, the theory of schemes takes any commutative ring with
identity and makes it the ring of functions on a suitable space. This applies in
particular to the ring of integers and its relatives and the resulting perspective
has had a profound impact on number theory.

Alternatively, the base field remains C, but the algebras are allowed to be non-
commutative. The correspondence gives rise to so-called “non-commutative
spaces,” of which the last problem is an example. Fields Medalist Alain Connes
coined this term for a space which is best described by the study of an associated
non-commutative C*-algebra, and non-commutative geometry is a developing
field aimed at understanding this correspondence.



