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The goal of this project is to introduce Lie groups and their application
for solving ordinary differential equations (ODEs). Amazingly enough, most
of the 'recipe-based’ techniques for solving differential equations that are typ-
ically taught are merely special cases of this much more general scheme that
simply exploits the symmetries of the differential equation. It was invented
by Sophus Lie in the 19th century and involves a beautiful application of
algebra in analysis.

The project ends with a concrete example, the Riccati class of equations,
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where qo, q1, g2 are functions of x only. The Riccati equations have many

important applications, including classical physics, variational calculus, non-
linear physics, thermodynamics, quantum theory, and even cosmology.

Lie Groups for first order ODEs
Consider the first order ODE

d
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1. A symmetry of Eq. (2) is a transformation (x,y) — (Z,y) such that
dy L
= w(@g) (3)
T

whenever Eq. (2) is satisfied. Namely, a transformation is a symmetry
if it preserves the form of the original equation.

Use the chain rule to prove that the transformation (z,y) — (z,7) is a
symmetry of Eq. (2) if and only if the symmetry condition is satisfied

?AJerw(x,y)?{y :w(i,yj) (4)
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Here the subscript denotes partial derivative.
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2. A one-parameter (local) Lie group of Eq. (2) is a map

Le: (z,y) = (&(z,y3€), 9(z, y;€)) (5)

that satisfies the following conditions:

e ['. is a symmetry of Eq. (2) for every ¢ in some neighborhood of

Zero.

e [y is the trivial symmetry, namely (Z,9) = (x,y) when ¢ = 0.

o ['sI'. =Ty, for every 6, ¢ sufficiently close to zero.

e (Z,y) may be represented as a Taylor series in € (about € = 0).
Prove that translations in the y direction I'; : (x,y) — (x,y +¢) satisfy

the last three conditions in the definition of a one-parameter Lie group
of Eq. (2). (The first condition depends on the equation studied.)

3. Prove that if the symmetries of Eq. (2) include the Lie group of trans-
lations in the y direction, then

w(r,y) = w(z,y+¢€) (6)
for all € in some neighborhood of zero.

4. Use the previous problem to show that in this case, the ODE in Eq.
(2) can be solved immediately, and its general solution is

y = /w(:c)d:c +c (7)

It is easy to see that in fact the one-parameter Lie group of y-translations
acts on the set of solution curves by changing the constant of integra-
tion.

This demonstrates that in fact, if one finds a ’'good’ coordinate system
in which the symmetries are equivalent to translations, then the ODE
can be easily solved.

But what is a ’good’ coordinate system? In the next part we will see
that the Lie group contains the answer to this question as well.



Canonical Coordinates

Due to the properties of a one-parameter Lie group, one may write

z+eC(z,y) + O(e?) (8)
y+en(z,y) + O(e?)

=

<
Il

It is useful to study the action of a one-parameter Lie group of sym-
metries on points in the x — y plane. The orbit of the group through
(x,y) is the set of points to which (z,y) can be mapped by varying €.

It is convenient to think of the Lie group as describing a steady flow of
particles on the plane, where the parameter ¢ represents "time”, and
then the tangent vector at (z,y)
) )
e=0

represents the velocity of a particle at that point. In this analogy the
orbit is the path of the particle.

(C(z,y),n(z,y)) = (fl—f
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A point that is mapped to itself by the Lie symmetries is called an
invariant point. Similarly, a curve in the x — y plane that is mapped
to itself by the Lie symmetries is called an invariant curve.

The partial differential operator
X'=¢(,9)0: + n(z,y)0, (10)
is called the infinitesimal generator of the Lie group.

. Show that all the orbits of the y-translation symmetries in Eq. (6) have
the same tangent vector at every point:

(C(z,y),n(z,y)) = (0,1) (11)
. Considering the problems in the first section, our goal is to introduce
coordinates
(r,s) = (r(z,y), s(z,y)) (12)
such that
(7,8) = (r(&,9),s(2,9)) = (r,s +¢) (13)



If this is possible, then in the new coordinates the tangent vector at
the point (r,s) is (0, 1), namely

dr

de
Use the chain rule to show that in this case the functions r(x, y), s(x, y)
satisfy the linear partial differential equations

Xr = ((z,y)rs + n(z,y)r, = 0 (15)
Xs = ¢(,y)se +n(z,9)s, = 1
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Any pair of functions r(x,y), s(x,y) satisfying Eqgs. (15) is called a
pair of canonical coordinates. Note that canonical coordinates cannot
be defined at an invariant point because the determining equation for
s has no solution in this case.

Once Eqgs. (15) are solved, one can use the new variables (r, s) to easily
integrate the original ODE. Of course, in order to use this method one
must first determine the canonical coordinates by solving the PDE (15)
using the method of characteristics. Typically, this is much easier than
solving the original ODE (2). An explicit example is outlined in the
next section.

7. (A tough one...) Show that a curve y(z) is an invariant curve if and
only if it satisfies the characteristic equation

n(x,y) —w(z,y)((r,y) =0 (16)

Hint: What should be the direction of the flow for the curve y(z) to be
invariant?

Note that this is an algebraic equation for y(x). This is a remarkable
result that shows that one can sometimes obtain particular solutions
of differential equations without doing a single integrall

Example

8. Consider the Riccati equation

Y22 (17)



10.

11.

12.

corresponding to the choice ¢y = —1/23, ¢ = —2/x and ¢, = = in Eq.
(1). Show that the transformation

(,9) = (e"z, e *y) (18)

is a one parameter Lie group of scaling symmetries for this Riccati equa-
tion. Why are there exponentials in the definition of this Lie group?

Use the one parameter Lie group from the previous problem to show
that it has two invariant solutions

y = +a72 (19)

Use the method of characteristics to solve the defining Eqgs. (15) for
canonical coordinates. Show that

(r,5) = («”y, In|z]) (20)
is a solution for z # 0.

Show that in these canonical coordinates the Riccati Eq. (17) reduces

to J ]
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Integrate the last equation to show that in the original (z,y) coordi-
nates, its general solution is

c+ x?
= 22
T Py (22)
In what limits are the invariant solutions curve from problem 9 can be

obtained?



