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It’s not hard to show using elementary calculus that there are infinitely
many primes and more precisely that the series

∑
p p
−1 diverges. The aim of

this project is to use group theory and complex analysis to show that if m
and a are relatively prime integers, then

∑
p≡a mod m p−1 diverges and so there

are infinitely many primes in the arithmetic progression a, a + m,a + 2m, . . . .
Remarkably, the only known proofs of this fact use analytic methods.

1. (Partial summation) If a1, a2, . . . and b1, b2, . . . are sequences of complex
numbers and AN = a1 + · · ·+ aN , then

N∑
n=1

anbn = ANbN +
N−1∑
n=1

An(bn − bn+1).

2. (Dirichlet series) With notation as above, if there are constants C and σ1

such that |An| ≤ Cnσ1 then the series
∞∑

n=1

ann
−s

converges for <s > σ1 and the convergence is uniform on compact sub-
sets. Hint: Apply the Cauchy criterion, using partial summation and the
formula (k−s − (k + 1)−s)/s =

∫ k+1

k
x−s−1 dx.

3. (Riemann ζ) Define ζ(s) =
∑∞

n=1 n
−s. By the previous part, this defines

an analytic function in the region <s > 1. For positive integers r, define
ζr(s) = (1−r1−s)ζ(s). Using ζ2 and ζ3, prove that there is a meromorphic
function defined in the region <s > 0 which has a simple pole (with residue
1) at s = 1, no other singularities, and agrees with ζ(s) in the region
<s > 1. Hint: Look at the Dirichlet series expansion of ζr and use part
(2) above. Pay attention to convergence vs. absolute convergence. To see
the residue at s = 1, compare ζ(s) with

∫∞
1
x−s dx. We let ζ(s) denote

the extended function.

4. (Euler product) Prove that for <s > 1,

ζ(s) =
∏
p

(
1− p−s

)−1

1



where the product is over all prime numbers p.

5. (
∑

p p
−1 diverges) In <s > 1,

log ζ(s) =
∑

p

∑
k≥1

p−ks

k
.

Show that ∣∣∣∣∣∣
∑

p

∑
k≥2

p−ks

k

∣∣∣∣∣∣ ≤ 1

in <s ≥ 1 and conclude that
∑

p p
−1 diverges.

6. (Characters) Let G be a finite abelian group and let Ĝ = Hom(G,C×)
(complex-valued characters of G). Prove that G and Ĝ are isomorphic
(but not canonically) as groups. We write e for the identity element of G
and χ0 for the identity element of Ĝ. Show that for all χ ∈ Ĝ∑

g∈G

χ(g) =

{
|G| if χ = χ0

0 otherwise

and for all g ∈ G ∑
χ∈Ĝ

χ(g) =

{
|G| if g = e

0 otherwise
.

7. (Dirichlet L-functions) Let G = (Z/mZ)× (invertible elements in the ring
of integers modulo m). Any χ ∈ Ĝ can naturally be viewed as a function
of integers relatively prime to m. We extend χ to a function on Z by
setting χ(a) = 0 if a and m are not relatively prime. Define

L(s, χ) =
∑
n≥1

χ(n)n−s

and show that L(s, χ) =
∏

p(1 − χ(p)p−s)−1 in <s > 1. Show that
L(s, χ0) =

∏
p|m(1− p−s)ζ(s) (and so it extends to a meromorphic func-

tion on <s > 0). Show that if χ 6= χ0 then L(s, χ) is holomorphic in
<s > 0. Hint: The series converges there, although not absolutely.

8. (Strategy) In <s > 1 we have

1
φ(m)

∑
χ∈Ĝ

χ−1(a) logL(s, χ) =
∑
p,k

pk≡a mod m

p−ks

k
∼

∑
p≡a mod m

p−s

where ∼ means the two sides differ by a function which is bounded as
s tends to 1 from the right and φ(m) is the order of (Z/mZ)×. Since
logL(s, χ0) →∞ as s→ 1, if we can show that L(1, χ) 6= 0 for all χ 6= χ0,
this would imply that

∑
p≡a mod m p−s →∞ as s→ 1 which is our desired

result.

2



9. (
∏

χ L(s, χ) non-zero near 1) Show that

1
φ(m)

∑
χ

logL(s, χ) ≥ 0

for s ∈ (1,∞) and conclude that
∏

χ L(s, χ) ≥ 1 on the same set.

10. (Non-vanishing for complex χ) Note that χ ∈ Ĝ has order 2 if and only
if it has only real values. If not, then χ−1 6= χ. Show that L(1, χ) = 0
implies L(1, χ−1) = 0. If this were the case, then

∏
χ L(s, χ) would have

a zero at s = 1 contradicting the previous part.

11. (Non-vanishing for real χ) This case is harder and we resort to a trick.
Suppose that χ is real-valued and that L(1, χ) = 0. Then L(s, χ)L(s, χ0)
is analytic in <s > 0. Set

ψ(s) =
L(s, χ)L(s, χ0)
L(2s, χ0)

and note that ψ is meromorphic in <s > 0, analytic in a neighborhood of
1/2, and has a zero at s = 1/2. In <s > 1 we have

ψ(s) =
∏

p with χ(p)=1

1 + p−s

1− p−s
=

∑
n≥1

ann
−s

where the an are non-negative. Form the Taylor expansion around s = 2
and show that

ψ(s) =
∑

bn(2− s)n

where the bn are non-negative. Conclude that for s ∈ (1/2, 2), ψ(s) ≥
ψ(2) ≥ 1, contradicting the fact that ψ(s) → 0 as s→ 1/2. Thus L(1, χ) 6=
0.

Amazingly, the actual values L(1, χ) have great number-theoretic signifi-
cance. For example, if m is a prime congruent to 3 mod 4 and χ is the unique
character modulo m of order exactly 2, then L(1, χ) is π/m3/2 times an inte-
ger and the integer is, on the one hand, the number of (equivalence classes of)
binary quadratic forms of discriminant m and on the other, a measure of the
failure of unique factorization in the field Q(

√
−m). The study of the arithmetic

meaning of special values of L-functions is one of the major currents in modern
number theory.
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