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1. Solving Linear Recurrences using Generating Functions

A linear recurrence is any recursive definition for a sequence {an} of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k.

It is said to have order k, and evidently one must specify the first k values a0, a1, . . . ,
ak−1 to obtain a unique sequence {an} satisfying the recurrence (note that here we’ll
use the convention that the first term in a sequence is a0). The following discussion
is valid over any field for which the characteristic polynomial

1− c1x− c2x
2 − · · · − ckxk

factors into linear terms; but for simplicity, we will assume that all of the sequences
are defined over the complex numbers C.

For a sequence {an} that satisfies a linear recurrence, show that the Taylor series

f(x) =
∞∑

n=0

anxn

converges in a neighborhood of x = 0. The function f(x) is called a generating
function for the sequence {an}. Show that in this neighborhood, f(x) · p(x) =
q(x), where p(x) is the characteristic polynomial of the recurrence and q(x) is a
polynomial of degree < k.

Now suppose that p(x) has roots λ1, λ2, . . . , λk and factors as (x − λi)di with
λi ∈ C. Show that there exist polynomials ri(x) with deg(ri) < di so that

q(x)
p(x)

=
k∑

i=1

ri(x)
(x− λi)di

.

One approach would be to let V be the vector space of rational functions of the
form r(x)

p(x) , where deg(r) < deg(p), and then show that the functions

1
(x− λi)j

, 1 ≤ j ≤ di

form a basis of V .
As an aside, the upshot of what we just proved was that the method of partial

fractions “works”: one can always decompose a rational function into a sum of a
polynomial and a (unique) set of partial fractions over C. In fact, if the ratio-
nal function has coefficients in R, one could then recombine the partial fractions
corresponding to complex conjugate roots, and recover the usual partial fraction
decomposition from integral calculus. An important corollary is the fact that every
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rational function has an antiderivative that can be expressed in terms of elementary
functions.

Finally, use the Taylor series for
1

(x− λi)j

to obtain a closed-form expression for the sequence an. Hint: you can find the
Taylor series for the above expression by successively differentiating term-by-term
the well-known Taylor series for 1

(x−λi)
.

Apply these ideas to find closed-form expressions for the following sequences:
• (The Fibonacci numbers) F0 = 0; F1 = 1; Fn = Fn−1 + Fn−2 for n ≥ 2.
• a0 = 1; a1 = 3; an = 4an−1 − 4an−2 for n ≥ 2.

2. Some Other Interesting Generating Functions (Optional)

Catalan Numbers. The Catalan numbers cn arise in many combinatorial
problems. One of the easiest ways to describe them is as the number of ways to
arrange n pairs of parentheses. For example, c3 = 5:

()()(); ()(()); (())(); (()()); ((())).

By convention, c0 = 1. Show that the Catalan numbers satisfy the recurrence

cn+1 =
n∑

i=0

cicn−i.

Show that their generating function

C(x) =
∞∑

n=0

cnxn

converges in a neighborhood of x = 0, and use the recurrence to find a formula for
C(x) valid in this neighborhood. Hint: careful consideration of C(x)2 should lead
to a quadratic equation in C(x).

Use the binomial Taylor series

(1 + x)p = 1 + px +
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)
3!

x3 + · · ·

to find a closed-form expression for cn.
Derangements. A permutation π of the set {1, 2, . . . , n} such that π(i) 6= i

for all i is called a derangement. The number of derangements of a set of size n is
denoted dn, where d0 = 1 by convention. Show that the number of derangements
dn satisfies the recurrence

dn+1 = n(dn + dn−1).

Hint: if π is a derangement of {1, 2, . . . , n + 1}, then π(n + 1) = i for some i ∈
{1, 2, . . . , n}. Now consider separately the cases that π(i) = n+1 and π(i) 6= n+1.

There are too many derangements for the generating function of the sequence
{dn} to converge in any neighborhood of x = 0; in fact, we will see below that dn

is of the same order of magnitude as n!. So instead we’ll consider the exponential
generating function

D(x) =
∞∑

n=0

dn

n!
xn.
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Show that D(x) converges in a neighborhood of x = 0, and use the recurrence for
dn to show that, in that neighborhood, D(x) satisfies the differential equation

(1− x)D′(x) = xD(x).

Solve this differential equation for D(x), and use it to prove that

dn = n!
n∑

i=0

(−1)i

i!
.

The probability pn that a random permutation π ∈ Sn is fixed-point-free is
evidently dn

n! . Find lim
n→∞

pn.


