Integration Workshop Project

1 Group Representations

A representation of a group G gives us a way of visualizing G as a group of matrices. To be precise, a representation is a homomorphism from G into a group of invertible matrices. We would like to study some basic ideas of representation theory and connect it to basic ideas from linear algebra.

Definition 1 A representation of G over F is a homomorphism ρ from G to GL(n,F), for some n. The degree of ρ is the integer n.

Definition 2 Let $\rho: G \to GL(m, F)$ and $\sigma: G \to GL(n, F)$ be representations of G. We say that ρ is equivalent to σ if n = m and there exists and invertible $n \times n$ matrix T such that for all $g \in G$, $g\sigma = T^{-1}(g\rho)T$.

Problem 3 Show that equivalent representations form an equivalence class of representations. (i.e. show that it is reflexive, symmetric, and transitive).

Problem 4 Consider the representation of the dihedral group (symmetries on a square) $G = D_8 = \langle a, b : a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ where a is a rotation and b is a reflection with

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. (consider a square with vertices $(1,1)$, $(1,-1)$, $(-1,1)$ and $(-1,-1)$

- (i) What is another possible representation?
- (ii) Is the following a representation?

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}?$$

Definition 5 A representation $\rho: G \to GL(n, F)$ is said to be faithful if ker $\rho = \{1\}$.

Problem 6 Prove the following: A representation ρ of a finite group G is faithful if and only if $\operatorname{Im} \rho$ is isomorphic to G. What are the dimensions of the faithful representations of D_8 above? Can a group have a faithful 1-dimensional representation? If not explain why. If possible give an example.

Problem 7 Let $G = D_{12} = \langle a, b : a^6 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$, the symmetries of a regular hexagon. Define the matrices A, B, C, D over \mathbb{C} by

The second regular netagon. Define the matrices
$$A, B, C, D$$
 over C by
$$A = \begin{pmatrix} e^{i\pi/3} & 0 \\ 0 & e^{-i\pi/3} \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
Prove that each of the function $\rho_k : G \to GL(2, \mathbb{C})$ $(k = 1, 2, 3, 4)$, given by

$$\begin{array}{l} \rho_1: a^r b^s \to A^r B^s, \\ \rho_2: a^r b^s \to A^{3r} \left(-B \right)^s \\ \rho_3: a^r b^s \to \left(-A \right)^r B^s, \\ \rho_4: a^r b^s \to C^r D^s & \left(0 \le r \le 5, 0 \le s \le 1 \right), \end{array}$$

is a representation of G. Which of these representations are faithful? Which are equivalent?

Problem 8 Give an example of a faithful representation of D_8 of degree 3.

Problem 9 Suppose that ρ is a representation of G of degree 1. Prove that $G/\ker\rho$ is abelian.

2 FG-modules

We now introduce the concept of an FG-module and show that there is a close connection between FG-modules and representations of G over F.

Let G be a group and let F be \mathbb{R} or \mathbb{C} .

Suppose that $\rho: G \to GL(n, F)$ is a representation of G. Write $V = F^n$, the vector space of all row vectors $(\lambda_1,...,\lambda_n)$ with $\lambda_i \in F$. For all $v \in V$ and $g \in G$ the matrix product

$$v\left(g\rho\right)$$
,

of the row vector v with the $n \times n$ matrix $g\rho$ is a row vector in V. Some basic properties are

- 1. $v(1\rho) = v$,
- 2. $(\lambda v)(g\rho) = \lambda(v(g\rho))$, and
- 3. $(u+v)(q\rho) = u(q\rho) + v(q\rho)$ for all $u, v \in V$, $\lambda \in F$ and $q \in G$.

Problem 10 Let $G = D_8$ with the representation as in problem4 above. If $v = (\lambda_1, \lambda_2) \in F^2$ then compute the following: $v(a\rho)$, $v(b\rho)$, and $v(a^3\rho)$.

Motivated by these above observations on the product $v(q\rho)$ we now define an FG-module.

Definition 11 Let V be a vector space over F and let G be a group. Then V is an FG-module if a multiplication vg $(v \in V, g \in G)$ is defined, satisfying the following conditions for all $u, v \in V$, $\lambda \in F$, and $g, h \in G$

```
1. vg \in V;
```

2.
$$v(gh) = (vg)h;$$

3.
$$v1 = v$$
;

4.
$$(\lambda v) g = \lambda (vg)$$
;

5.
$$(u+v)g = ug + vg$$

We use the letters F and G in the name "FG-module" to indicate that V is a vector space over F and that G is the group from which we are taking the elements g to form the products vg.

Definition 12 Let V be an FG-module, and let \mathcal{B} be a basis of V. For each $g \in G$, let

 $[g]_{\mathcal{B}}$

denote the matrix of the endomorphism $v \to vq$ of V relative to the basis \mathcal{B} .

The connection between FG-modules and representations of G over F is revealed in the following theorem.

Theorem 13 (1) If $\rho: G \to GL(n, F)$ is a representation of G over F and $V = F^n$, then V becomes an FG-module if we define the multiplication vg by

$$vg = v(g\rho)$$
 $(v \in V, g \in G)$.

Moreover there is a basis \mathcal{B} of V such that

 $g\rho = [g]_{\mathcal{B}} \text{ for all } g \in G.$

(2) Assume that V is an FG-module and let \mathcal{B} be a basis of V. Then the function $g \to [g]_{\mathcal{B}}$ $(g \in G)$ is a representation of G over F.

As you might expect, there are restrictions on how we may define the vectors $v_i g$. So your job is to prove the next result which is often used to show that our chosen multiplication turns V into an FG-module.

Proposition 14 Assume that $v_1, ..., v_n$ is a basis of a vector space V over F. Suppose that we have a multiplication vg for all v in V and g in G which satisfies the following conditions for all i with $1 \le i \le n$, for all $g, h \in G$ and for all $\lambda_1, ..., \lambda_n \in F$:

1.
$$v_i g \in V$$

2.
$$v_i(gh) = (v_i g) h$$

3. $v_i 1 = v_i$

4.
$$(\lambda_1 v_1 + ... + \lambda_n v_n) g = \lambda_1 (v_1 g) + ... + \lambda_n (v_n g)$$
.

Then V is an FG-module.

Problem 15 Prove it!

Definition 16 Let G be a subgroup of S_n . The FG-module V with basis $v_1, ..., v_n$ such that

 $v_i g = v_{ig} \text{ for all } i \text{ and all } g \in G$

is called the permutation module for G over F. We call $v_1,...,v_n$ the natural basis of V.

Example 17 Let $G = S_4$ and let \mathcal{B} denote the basis v_1, v_2, v_3, v_4 of V. If g =(12), then

 $v_1g = v_2, v_2g = v_1, v_3g = v_3, v_4g = v_4.$

And if h = (134), then

 $v_1h = v_3$, $v_2h = v_2$, $v_3h = v_4$, and $v_4h = v_1$

$$[g]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } [h]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Problem 18 Suppose that $G = S_3$ and that $V = \operatorname{span}(v_1, v_2, v_3)$ is the permutation module for G over \mathbb{C} . Let \mathcal{B}_1 be the basis v_1, v_2, v_3 of V and let \mathcal{B}_2 be the basis $v_1 + v_2 + v_3, v_1 - v_2, v_1 - v_3$. Calculate the 3×3 matrices $[g]_{\mathcal{B}_1}$ and $[g]_{\mathcal{B}_2}$ for all g in S_3 . What do you notice about the matrices $[g]_{\mathcal{B}_2}$?

Problem 19 Let A be an $n \times n$ matrix and let B be a matrix obtained from A by permuting the rows. Show that there is an $n \times n$ permutation matrix P such that B = PA. Find a similar result for a matrix obtained from A by permuting the columns.

FG-submodules and reducibility

Definition 20 Let V be an FG-module. A subset W of V is said to be an FG-submodule of V if W is a subspace and $wg \in W$ for all $w \in W$ and all $g \in G$.

Definition 21 An FG-module V is said to be irreducible if it is non-zero and it has no FG-submodules apart from $\{0\}$ and V.

Problem 22 Let $G = C_3$ the cyclic group of order $3 = \langle a : a^3 = 1 \rangle$, and let V be the 3 dimensional FG-module given by $v_11 = v_1$, $v_21 = v_2$, $v_31 = v_3$, $v_1a = v_2$, etc. Is span $(v_1 + v_2)$ an FG-submodule? Is this FG-module reducible or irreducible? Prove your answer.

Suppose that V is a reducible FG-module, so that there is an FG-submodule W with $0 < \dim W < \dim V$. Take a basis \mathcal{B}_1 of W and extend it to a basis \mathcal{B} of V. Then for all g in G the matrix $[g]_{\mathcal{B}}$ has the form

$$\begin{pmatrix} X_g & 0 \\ Y_g & Z_g \end{pmatrix}$$

 $\begin{pmatrix} X_g & 0 \\ Y_g & Z_g \end{pmatrix}$ for some matrices X_g , Y_g , and Z_g , where X_g is $k \times k$ ($k = \dim W$). A representation is reducible if and only if it can be put in this form.

Problem 23 Let $G = C_2 = \langle a : a^2 = 1 \rangle$ and let $V = F^2$. For $(\alpha, \beta) \in V$, define $(\alpha,\beta) = (\alpha,\beta)$ and $(\alpha,\beta) = (\beta,\alpha)$. Verify that V is an FG-module and find all the FG-submodules of V.

Problem 24 Let ρ and σ be equivalent representations of they group G over F. Prove that if ρ is reducible then σ is reducible.

Problem 25 Define the permutation $a, b, c \in S_6$ by

$$a = (123), b = (4, 56), and c = (23)(45),$$

and let $G = \langle a, b, c \rangle$, the group generated by these three permutations.

(a) Check that

 $a^3 = b^3 = c^2 = 1$, ab = ba, $c^{-1}ac = a^{-1}$ and $c^{-1}bc = b^{-1}$. Deduce that G has order 18.

(b) Suppose that ε and η are complex cube roots of unity. Prove that there is a representation ρ of G over \mathbb{C} such that

$$a\rho = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}, b\rho = \begin{pmatrix} \eta & 0 \\ 0 & \eta^{-1} \end{pmatrix}, c\rho = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- (c) For which values of ε, η is ρ faithful
- (d) For which values of ε , η is ρ irreducible?

Problem 26 Let $G = C_{13}$. Find a $\mathbb{C}G$ -module which is neither reducible nor irreducible.

The following lemma, Schur's lemma is a basic result concerning irreducible modules. It is a fundamental result to representation theory and there is an immediate application which helps to determine all the irreducible representations of finite abelian groups. Note that Schur's lemma deals with $\mathbb{C}G$ -modules.

Lemma 27 (Schur's) Let V and W be irreducible $\mathbb{C}G$ -modules.

- (1) If $\theta: V \to W$ is $\mathbb{C}G$ -homomorphism, then either θ is a $\mathbb{C}G$ -isomorphism, or $v\theta = 0$ for all $v \in V$.
- (2) If $\theta: V \to V$ is a CG-isomorphism, then θ is a scalar multiple of the identity endomorphism 1_V .