INTEGRATION WORKSHOP 2004 PROJECT ON TOPOLOGICAL VECTOR SPACES

DOUGLAS ULMER

A (real) topological vector space is a vector space V over \mathbb{R} with a Hausdorff topology such that the addition and scalar multiplication maps $V \times V \to V$ and $\mathbb{R} \times V \to V$ are continuous.

Prove that a linear map $V \to W$ of topological vector spaces is continuous if and only if it is continuous at the origin.

If V is a finite dimensional vector space and we fix a vector space isomorphism $\phi : \mathbb{R}^n \to V$, then we may transfer the metric topology from \mathbb{R}^n to V: the open subsets of V are the sets $\phi(U)$ where U is open in \mathbb{R}^n . Prove that the resulting topology on V is independent of the choice of ϕ .

More generally, there is only one topology on a finite dimensional vector space V which makes it into a topological vector space. Hints for a proof: Choose a vector space isomorphism $\phi : \mathbb{R}^n \to V$. Define $S = \{x \in \mathbb{R}^n | |x| = 1\}$ and $B = \{x \in \mathbb{R}^n | |x| < 1\}$.

- (1) Prove directly from the definitions that ϕ is continuous.
- (2) Prove that $\phi(S)$ is closed in V and so $V \setminus \phi(S)$ is open.
- (3) Use the continuity of $\mathbb{R} \times V \to V$ to show that every neighborhood of the origin in V contains an open set U such that $0 \in U$ and $\alpha U \subset U$ for all real $-1 < \alpha < 1$.
- (4) Apply the previous step to $V \setminus \phi(S)$ to prove that ϕ^{-1} is continuous.

What happens if we drop the Hausdorff assumption?

Given an example of an infinite dimensional vector space V with two different topologies \mathcal{U} and \mathcal{U}' (i.e., such that the identity map $V \to V$ does not induce a homeomorphism $(V,\mathcal{U}) \to (V,\mathcal{U}')$). Can you prove that *no* linear map $V \to V$ induces a homeomorphism $(V,\mathcal{U}) \to (V,\mathcal{U}')$?