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Winding numbers make precise the intuitive notion of “the number of times
a path goes around a point.” This project uses vector calculus to set up the
basics and then applies them to prove the fundamental theorem of algebra,
the Brouwer fixed point theorem for a disk, and other results. Some of the
basic preoccupations of algebraic topology (homotopy, integration as a pairing,
degrees of mappings, ...) are met along the way.

We take a “real” point of view (so the plane is R2, not C). You might find
it interesting to translate everything into a more “complex” view.

1 1-forms and line integrals

1.1

Let U ⊂ R2 be an open set. A (smooth) 1-form on U is an expression of the
form ω = p(x, y) dx + q(x, y) dy where p and q are smooth (C∞) functions on
U . If f is smooth function on U , then we define df by

df =
∂f

∂x
dx +

∂f

∂y
dy.

Such a 1-form is said to be exact .
A 1-form ω = p dx + q dy is closed if dω = 0 where by definition

dω =
(

∂q

∂x
− ∂p

∂y

)
dx dy.

Prove that an exact 1-form is automatically closed, but that the converse is
false.

1.2

A path γ : [a, b] → U is a piecewise smooth map from an interval into U .
(Piecewise smooth means that γ is continuous and you can subdivide the interval
into finitely many pieces so that γ is smooth on each piece.) The endpoints of
γ are γ(a) and γ(b) and we say that γ is closed if its endpoints are equal. We
write γ(t) = (x(t), y(t)) for t ∈ [a, b].
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1.3

If ω is a 1-form on U and γ is a path in U , we define∫
γ

ω =
∫ b

a

(p(x(t), y(t))x′(t) + q(x(t), y(t))y′(t)) dt

where the right hand side is the usual Riemann integral.

1.4

A reparametrization of γ is another path δ : [a′, b′] → U of the form δ = γ ◦ r
where r : [a′, b′] → [a, b] is a piecewise smooth map with r(a′) = a and r(b′) = b.
Prove that ∫

δ

ω =
∫

γ

ω.

Let −γ : [a, b] → U denote that path with −γ(t) = γ(a + b − t). (This is γ
traversed backwards.) Prove that∫

−γ

ω = −
∫

γ

ω.

1.5

Suppose that γ and δ are closed paths in U with the same domain [a, b]. Then a
(smooth) homotopy between γ and δ is a smooth function H : [0, 1]× [a, b] → U
such that H(0, t) = γ(t), H(1, t) = δ(t),for all t and H(s, a) = H(s, b) for all s.
You should think of this as a family of closed paths γs parametrized by s such
that γ0 = γ and γ1 = δ. We say that γ and δ are (smoothly) homotopic.

Prove that if γ and δ are homotopic then
∫

γ
ω =

∫
δ
ω for every closed 1-form

ω on U . (Cryptic hint: Pull ω back to the square [0, 1]× [a, b] and use Green’s
Theorem. More details can be provided as necessary.)

1.6

Show that ∫
γ

df = f(γ(b))− f(γ(a)).

In particular, the integral of an exact differential only depends on the endpoints
of the path, not on the path itself. (Equivalently, the integral of an exact form
over a closed path is zero.)

Show conversely that if a 1-form ω has the property that
∫

γ
ω only depends

on the endpoints of γ, then ω is exact. (Equivalently, ω is exact if
∫

γ
ω = 0 for

all closed paths in U .)
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1.7

Prove that the 1-form
−y dx + x dy

x2 + y2

on R2 \ {(0, 0)} is not exact. The traditional notation for this form is dθ which
is misleading, since you just proved that there is no function θ such that dθ is
the 1-form above! Explain why this notation is nevertheless appealing.

2 Winding numbers

2.1

Let U = R2 \ {(0, 0)} and let γ : [a, b] → U be a path in U . We want to think
about γ in polar coordinates, but there is some ambiguity in the angle variable.
I.e., if we write

γ(t) = (r(t) cos(θ(t)), r(t) sin(θ(t))), (1)

then θ(t) is not uniquely determined. But we can make it unique by choosing a
value θa for θ(a) and insisting that θ(t) be continuous.

Indeed, choose θa such that γ(a) = (r cos(θa), r sin(θa)) for some r and define
θ(t) and r(t) by

θ(t) = θa +
∫ t

a

−y(τ)x′(τ) + x(τ)y′(τ)
x(τ)2 + y(τ)2

dτ

and
r(t) = (x(t)2 + y(t)2)1/2.

Prove that r and θ are smooth and they are the unique continuous functions
making (1) true such that θ(a) = θa.

2.2

The quantity
∫

γ
dθ = θ(b) − θ(a) is called the total angular displacement of γ

(around 0). Note that it is independent of the choice of θa. Prove that if γ is
closed, then

∫
γ

dθ is an integer multiple of 2π. We define the winding number
of γ around 0 as

W (γ, 0) =
1
2π

∫
γ

dθ.

Compute a few examples to make sure that this is a reasonable definition.
For example, consider γ(t) = (cos(nt), sin(nt)).
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2.3

If p = (x0, y0) is any point in R2 and γ : [a, b] → U = R2 \ {p} is a closed path
not passing through p, then we define

W (γ, p) =
1
2π

∫
γ

−(y − y0)dx + (x− x0)dy

(x− x0)2 + (y − y0)2
.

By the results in Section 1, winding numbers are invariant under reparame-
terization and homotopy.

2.4

The support of a path γ : [a, b] → U is by definition {γ(t)|t ∈ [a, b]}. Prove
that W (γ, p) is constant as a function of p on the connected components of
R2 \ Support(γ). Intuitively, we can move the point p a little without changing
the winding number. Prove also that exactly one connected component of R2 \
Support(γ) is unbounded, and W (γ, p) = 0 on this component.

If you know about the Jordan curve theorem, what does it say here?

2.5

Apply homotopy invariance to prove that if γ and δ are two paths in U = R2 \p
such that for all t the line segment between γ(t) and δ(t) does not contain p,
then W (γ, p) = W (δ, p).

In particular, if |γ(t) − δ(t)| < |γ(t) − p| for all t ∈ [a, b], then W (γ, p) =
W (δ, p). This is sometimes called the “dog on a leash” theorem. Explain why.

2.6

A closed path can naturally be viewed as a piecewise smooth map from a circle
to R2. Prove that if γ : S1 → U = R2 \ {p} is a closed path and if there exists
an extension of γ to the disk, i.e., a smooth function Γ : D → U such that Γ
and γ agree on S1, then W (γ, p) = 0. (Here S1 is the unit circle and D is the
closed unit disk.)

3 Applications

3.1

Winding numbers can be used to prove the fundamental theorem of algebra: if
f(z) = a0z

n + · · ·+ an is a polynomial of positive degree, then f(z) has a root
in C.

Clearly we may assume that f is monic (i.e., a0 = 1). Suppose f has no
root. Define paths γr : S1 → U = C \ {0} by setting γr(e2πiθ) = f(re2πiθ), i.e.,
we restrict f to the circle of radius r around 0 in the plane. By assumption γr

extends to a map of the closed disk of radius r to U , so W (γr, 0) = 0.
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On the other hand, if δr is the family of paths defined similarly using g = zn,
then W (δr, 0) = n. Use the dog on a leash theorem to show that for large r,
W (γr, 0) = W (δr, 0) and deduce a contradiction.

3.2

One of the most famous, and amazing, theorems of topology is the Brouwer
fixed point theorem: a continuous map of the disk to itself f : D → D has
a fixed point, i.e., a point p ∈ D such that f(p) = p. We can prove this for
smooth maps f using winding numbers. (In fact, with a little more care winding
numbers can be defined for continuous maps, and then the same proof works.)

Let γ : S1 → S1 be a smooth map of the unit circle to itself. We define the
degree of γ by deg γ = W (γ, 0).

Prove that there is no retraction from D to S1, i.e., no smooth map F : D →
S1 which is the identity on S1. (Hint: Show that γ = F |S1 would have degree
1 since it’s the identity and also degree 0 because it extends to the disk.)

Now show that if f : D → D is a smooth map with no fixed points, then
there exists a retraction F : D → S1. (Hint: For each p ∈ D, consider the ray
from f(p) through p and the point where it meets S1.) Deduce the Brouwer
fixed point theorem.

3.3

The antipode of a point p on a circle or sphere is the opposite point, i.e., the
other point on the line through p and the center. We denote it by p∗.

Prove that if f : S1 → S1 has the property that f(p∗) = f(p)∗ (i.e., it sends
antipodes to antipodes), then deg f is odd. (Hint: Divide the path f in half
and show that the angular displacement for each half is 2π(n + 1/2) for some
integer n.)

Prove that there is no map f : S2 → S1 such that f(p∗) = f(p)∗. (Hint:
Cook up a map g : D → S2 such that f ◦ g restricted to S1 sends antipodes to
antipodes. Apply the previous paragraph to get a contradiction.)

Prove that if f : S2 → R2 is a smooth map, then there is a point p ∈ S2 such
that f(p) = f(p∗). (Hint: If not, use f to construct an antipodal preserving
map S2 → S1.) This is the Borsuk-Ulam theorem and it says, for example,
that at any point in time there are two antipodal points on the earth where the
temperature and humidity are the same.

3.4

The Stone-Tukey (or “ham sandwich”) theorem says that given three bounded
regions in R3, there is a plane which divides each of the regions in half (in terms
of volume). This is not too hard to prove from the second step in the proof of
the Borsuk-Ulam theorem, or at least from the analog for continuous maps.

First convince yourself of the following 2 facts:
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1. If X is a bounded region in space and L is a fixed line, then there is a
unique point PL,X on L such that the plane perpendicular to L through
PL,X cuts X in half.

2. If S is a sphere big enough to contain X and Q ∈ S, let L(Q) be the line
through Q and its antipode Q∗, and let PL(Q),X be the point on this line
bisecting X. Then the map Q 7→ PL(Q),X is continuous.

Now given a sphere S and a bounded region X as above, let fX : S → R be
defined by fX(Q) = the distance from Q to the point PL(Q),X above. Note that
fX is continuous.

Given three bounded regions X, Y , and Z, choose a sphere S containing
them all. Define a function g : S → R2 by g(Q) = (fX(Q) − fY (Q), fX(Q) −
fZ(Q)). Argue by contradiction that there must be a point where g(Q) = (0, 0)
and conclude the ham sandwich theorem.
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