
Integration workshop project - Tom Kennedy

Conformal maps and SLE

1 Background

The goal of this project is to understand the Loewner differential equation and its relation
to conformal maps. There is probably too much material here to go through it all during
the workshop. Your goal should be to work through the proof of theorem 3. To get to it
in a finite amount of time you can skip most of section 3, just reading the first definition
and statement of the first theorem. If you do this you can also skip the Schwarz reflection
principle in section 2.

In the last section we give a glimpse of how the Loewner equation is used to define
the Schramm-Loewner evolution or SLE, and how you can numerically simulate it. This
process gives random curves in the plane that describe a variety of models from probability
and statistical mechanics. It was introduced by Oded Schramm in a paper that appeared
in 1999. Many feel that Schramm should have won a Fields medal for this work. (The
Fields medal has an age limit of 40 and Schramm was just over 40.) In 2004, a Fields
medal was awarded to Wendelin Werner in large part for his joint work with Schramm
and Greg Lawler on SLE.

2 Conformal maps, Riemann mapping theorem

We start by defining a conformal map.

Definition 1 Let D and D′ be open subsets of R2. A map f : D → D′ is said to preserve
angles if for every two differentiable curves γ1 and γ2 in D defined on the time interval
(−ǫ, ǫ) which intersect at t = 0, the angle formed by their tangents at γi(0) is equal to the
angle formed by the tangents to f ◦ γ and f ◦ γ′ at f(γi(0)). A conformal map from D to
D′ is a one to one, onto, differentiable function that preserves angles.

Exercise 1 Let f(x, y) = (u(x, y), v(x, y)) be a differentiable map. Show that it preserves
angles at a point if and only if its derivative (which is a 2 by 2 matrix) is equal to a positive
constant times a rotation matrix, i.e., there is an a > 0 and a θ such that

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

= a

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(1)

The result of the exercise implies that the Cauchy-Riemann equations are satisfied.

Exercise 2 Show that if the Cauchy-Riemann equations are satisfied and the derivative
at the point is not zero, then there is an a > 0 and θ such that the above is true. So the
map preserves angles.
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Thus we have shown a map is a conformal map if and only if it is a one to one, onto
analytic function of D to D′. Note if f is a conformal map of D onto D′, then f−1 is a
conformal map of D′ onto D.

There is a special family of conformal maps - the linear fractional transformations.
They are of the form

f(z) =
az + b

cz + d
(2)

where a, b, c, d are complex numbers with ad − bc 6= 0. Linear fractional transformations
map circles onto circles if we think of lines in the plane as circles.

We will use D to denote the open unit disc with center at the origin and H to denote
the upper half plane. We will use “domain” to mean an open connected subset of the
complex plane. A domain is simply connected if it does not have any holes:

Definition 2 A domain D is simply connected if the region bounded by every simple
closed curve in D is contained in D, i.e., every simple closed curve in D may be con-
tinuously contracted to a point without leaving D. Equivalently, D is simply connected if
Ĉ \ D is connected.

Recall that Cauchy’s theorem says that if D is simply connected and f is analytic on
D and γ is a differentiable closed curve in D, then

∫

γ

f(z)dz = 0 (3)

One of the great theorems of complex analysis is the following.

Theorem 1 (Riemann mapping theorem) Let D be a simply connected region which is
not all of C and let w ∈ D. Then there is a unique conformal transformation f of D onto
the unit disc D such that f(w) = 0 and f ′(w) > 0.

Corollary: Any two simply connected domains have a conformal map between them.

A proof can be found in any first year graduate complex variables book. One of
the amazing aspects of this theorem is that it does not require any smoothness of the
boundary. The boundary need not even be a curve. If we want to extend the conformal
map so that it maps the boundary of D onto the boundary of D then we need some
condition on the boundary of D.

Roughly speaking, the family of conformal maps from one simply connected domain to
another has three real degrees of freedom. In our statement of the theorem the constraint
f(w) = 0 is a complex constraint and so uses two real degrees of freedom while f ′(w) > 0
says that the imaginary part of the derivative is zero and so used the third real degree
of freedom. When the map can be extended to the boundary, another common way to
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impose the three real constraints is to require three prescribed points on the boundary of
the domain get mapped to three presecribed points on the boundary of the range.

We end this section with a useful result to extending analytic functions. If f(z) is
analytic, then it is easy to check that f(z) is too (defined on the obvious domain). We
would like to use this fact to take an analytic function defined on a subset of the upper
half plane and extend it to the refected domain in the lower half plane. Clearly f(z) will
need to be real on the part of the real axis in the original domain if this is to work.

Theorem 2 (Schwarz reflection principle) Let D be a domain which is symmetric about
the real axis. Let D+ = D ∩ H. Let f be a function which is continuous on D+, analytic
in D+ and real valued on the set of reals in D. Then f may be extended to an analytic
function on all of D which satisfies f(z) = f(z).

Exercise 3

f(z) =
z − i

z + i
(4)

Show this is a conformal map of the unit disc D to the upper half plane H.

Exercise 4 If we remove the line segement from 0 to i from the upper half plane, the
resulting domain is simply connected. Find a conformal conformal map from H minus
this vertical slit onto H. Hint: if you get stuck note that this is a special case of the next
exercise.

Exercise 5 Let 0 < α < 1 and define

f(z) = [z + 1 − α]α[z − α]1−α (5)

Show that f(z) conformally maps H onto H\A where A is a line segment from 0 to reiαπ

for some r. Find r as a function of α.

3 Half plane capacity

We continue to use H to denote the upper half plane. We do not include the real axis, so
this is an open set.

Definition 3 A bounded subset A of H is a “compact H-hull” if A = H∩A and H \A is
simply connected.

Proposition 1 If A is a compact H-hull, then there is a unique conformal map gA :
H \ A → H such that

lim
z→∞

[gA(z) − z] = 0 (6)

3



Proof: The Riemann mapping theorem says there exist a conformal map g of H \A onto
H which maps ∞ to itself. Since A is bounded it is contained in a ball B(0, r) of radius
r about 0 for some r. Consider U = {z : |z| > r}. On H ∩ U , g is an analytic function
that can be continued to the boundary. It must map the boundary to the boundary
of H, i.e, the real axis. So by the Schwarz reflection principle, g(z) = g(z) defines an
analytic continuation of g to all of U . So if we let f(z) = 1/g(1/z), then f is analytic on
{z : |z| < r}. g(∞) = ∞ implies f(0) = 0. So the power series expansion of f(z) about
the origin is of the form

f(z) =
∞

∑

n=1

anzn (7)

which implies g has an expansion about ∞ of the form

g(z) = b−1z + b0 +

∞
∑

n=1

bnz
−n (8)

A little thought shows that since f maps parts of the real axis onto the real axis, all the
bi must be real. If we let gA(z) = (g(z)− b0)/b−1, then gA satisfies (6). We leave it to the
reader to prove uniqueness.

Definition 4 Let A be a compact H-hull. Let gA be the unique conformal map given by
the proposition. So the Laurent expansion is of the form

gA(z) = z +
∞

∑

n=1

bn

zn
(9)

The half plane capacity, hcap(A), is b1.

Proposition 2 Let A1 ⊂ A2 be compact H-hulls. Then hcap(A1) ≤ hcap(A2) with equal-
ity only if the sets are equal. If A is a compact H-hull and r > 0, x ∈ R then

hcap(rA) = r2 hcap(A), hcap(A + x) = hcap(A) (10)

Exercise 6 Prove the above theorem.

Exercise 7 Find the half-plane capacity of H with the vertical slit from 0 to iy removed.

Exercise 8 Let f(z) be defined as in exercise 5. Let g(z) = f−1(z), so g conformally
maps H \ A onto H, where A is defined as in exercise 5. Show that g(z) satisfies (6).
Recall that you found r as a function of α in the previous exercise. Use this to find the
half-plane capacity of the segment of length 1 from 0 to eiαπ.

4



4 Loewner differential equation

Let Ut be a real valued continuous function on [0,∞). The Loewner equation is the
differential equation

ġt(z) =
2

gt(z) − Ut

, g0(z) = z (11)

where ˙ denotes the derivative with respect to t. The variable t is real and non-negative,
while z and gt(z) are complex. The real valued function Ut is known as the “driving
function.” This is a differential equation in t. You can think of z as a parameter in the
dif eq.

Theorem 3 Let Ut be a continuous real-valued function on [0,∞). For z ∈ H, let gt(z)
be the solution of

ġt(z) =
2

gt(z) − Ut

, g0(z) = z (12)

The denominator can go to zero, causing the solution to fail to exist after some finite
time. Define

Tz = sup{t : gt(z) exists} (13)

Define
Ht = {z ∈ H : Tz > t}, Kt = {z ∈ H : Tz ≤ t} = H \ Ht (14)

Then Ht is open and Kt is closed. Kt grows with time in the sense that s ≤ t implies
Ks ⊂ Kt. The function gt(z) is the unique conformal map of Ht onto H such that
gt(z) − z → 0 as z → ∞. Furthermore ,

gt(z) = z +
2t

z
+ O(

1

|z|2 ), z → ∞ (15)

Proof: You will prove the theorem through a series of exercises. The fact that gt(z) is
analytic in z and continuous in t follows from standard dif eq theorems.

Exercise 9 Show Ht is open, Kt is closed and s ≤ t implies Ks ⊂ Kt.

Exercise 10 The goal of this exercise is to show that for each t, gt(z) is one to one. Let
z 6= w and define ∆t = gt(z) − gt(w). Show that ∆t satisfies

d ln(∆t)

dt
=

−2

(gt(z) − Ut)(gt(w) − Ut)
(16)

Solve this dif eq with the initial condition ∆0 = z − w, and use the solution to conclude
∆t 6= 0.
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Exercise 11 This exercise shows gt(Ht) ⊂ H. Let gt(z) = rt(z) + ivt(z) where r and v
are real valued. Show

ṙt(z) =
2(rt(z) − Ut)

(rt(z) − Ut)2 + vt(z)2
(17)

and

v̇t(z) =
−2vt(z)

(rt(z) − Ut)2 + vt(z)2
(18)

Use these equations to show vt(z) is decreasing when z is in the upper half plane and has
zero derivative on the real axis. Conclude from this that if z is in H, then gt(z) remains
in H as long as the solution is defined.

Exercise 12 To show gt(Ht) is all of H we consider the dif. eq. run backwards in time.
Fix t > 0 and define hs(w) by

ḣs(w) =
−2

hs(w) − Ut−s

, h0(w) = w (19)

Show the solution of this dif eq exists for s ≤ t. Hint: what is the sign of the derivative
of the imaginary part of hs ? Show that Gs = ht−s satisfies the original Loewner equation
and has Gt(w) = h0(w) = w and G0(z) = ht(z). So gt(ht(z)) = w.

Exercise 13 Verify 15 by considering the dif eq for large z.

This completes the proof.

Exercise 14 Solve the Loewner equation with Ut = 0. Relate your answer to an exercise
from section 2.

Exercise 15 Solve the Loewner equation for Ut = ct. You won’t be able to get a com-
pletely explicit solution, but you should be able to determine the limiting behavior of the
solution as as t → ∞.

Exercise 16 You can use the conformal map in exercises 5 and 8 to find a solution to
the Loewner equation which corresponds to a growing slit in the half plane. Let

φ(z) = [z + (1 − α)]α[z − α]1−α (20)

ft(z) =

√

4t

α(1 − α)
φ(z

√

α(1 − α)

4t
) (21)

and let gt = f−1
t . Show gt satisfies the Loewner equation and Kt is a line segment starting

at 0 and forming an angle of (1 − α)π with the positive horizontal axis. Find the driving
function. This is computationally heavy and it might be a good idea to use a computer to
do the calculation.
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5 Schramm-Loewner evolution

Brownian motion (one-dimensional) is a real valued stochastic process on the time interval
[0,∞). We denote it by Wt and take the “standard” Brownian motion which means that
it has mean zero and variance t. It has the property that Wt is a continuous function on
[0,∞). If you have never seen Brownian motion, think of it as some way to produce a
random continuous (but not differentiable) funtion Wt on [0,∞). The Schramm-Lowener
evolution is the Kt you get when you take the driving function in the Lowener equation
to be Ut =

√
κWt where κ is a non-negative parameter. In this case the growing set

Kt will be random. It is deeply related to many things: percolation, the Ising model,
the Potts model, the self-avoiding walk, the loop-erased random walk, ... It has many
interesting properties and in particular has a fractal structure. For κ < 4, Kt is a curve
with Hausdorff dimension 1+κ/8. For 4 < κ, Kt is not a curve and grows to fill the entire
half plane as t → ∞. Even though Kt is not a curve, it is closely related to a curve called
the “generating curve.” If κ < 8 this generating curve has Hausdorff dimension 1 + κ/8.
For κ > 8 the generating curve is space filling, i.e., it passes through every point.

Simulating SLE is a little tricky. It is defined by a dif. eq., but what we are interested
in the set of points where the solution no longer exists. So to approximately find this set
you have to numerically integrate the dif eq for a lot of initial conditions. One can use
the dif eq to simulate SLE, but here is a more direct method.

Fix an angle θ ∈ (0, π/2] and a length ρ > 0. Let f+(z) be the conformal map which
takes H onto H \ {reiθ : 0 < r ≤ ρ}, the upper half plane minus the line segment from 0
to ρeiθ. This map is not unique. We make the choice unique by requiring

f+(∞) = ∞
f ′

+(∞) = 1

f+(0) = ρeiθ

This normalization is slightly different from (6). Let f−(z) be the analogous conformal
map for the segment from 0 to ρei(π−θ). (So the range of f− is the reflection of the range
of f+ about the vertical axis.)

Consider composing two of these maps, e.g., f− ◦ f+. The effect of the second map in
the composition will be to push the line segment created by the first map into the upper
half plane and bend it somewhat. Because we have required that these maps send 0 to
the tip of the line segment, one endpoint of the image of the first slit under the second
map will be the tip of the second slit. In other words the composition f− ◦ f+ will map H

onto H with a curve removed. In fact we can compose multiple copies of f− and f+ and
the resulting conformal map will send the half plane onto the half plane minus a curve.

Now we will compose a large number of copies of f− and f+, chosen randomly. Let
Xn be a sequence of independent, identically distributed random variables with Xn = ±1
with probability 1/2. For positive integers n consider the conformal map

Fn = fX1
◦ fX2

◦ fX3
◦ · · · ◦ fXn

(22)
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The conformal map Fn will map H onto H \ γ where γ is a curve in the upper half
plane starting at 0. To obtain SLE we let n → ∞ and then let ρ → 0.

Exercise 17 Use your favorite software package to draw some pictures of SLE. See the
author’s home page for his pictures. What happens as you vary α? (The usual parameter
κ is related to α.)
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