Integration Workshop 2003 Project on Constructing the p-adic Numbers

Douglas Ulmer

For each prime number p there is a field of p-adic numbers, denoted \mathbb{Q}_p , which is complete with respect to a certain absolute value. Essentially any question that makes sense for the real numbers also makes sense for \mathbb{Q}_p and in particular one can develop a calculus of functions $f: \mathbb{Q}_p \to \mathbb{Q}_p$. One of the prevalent ideologies of modern number theory is that if one wants to study \mathbb{Q} , one should first study \mathbb{R} and all the fields \mathbb{Q}_p $(p=2,3,5,\ldots)$ in parallel.

This project gives two constructions of \mathbb{Q}_p and then proves that they give the same object.

1 Inverse limit construction

1.1

An inverse system of rings (groups, vector spaces, ...) is a collection of rings R_n for $n=1,2,3,\ldots$ together with ring homomorphisms $\phi_n:R_n\to R_{n-1}$. The inverse limit of such a system is by definition

$$R = \{(a_n)_{n \in \mathbb{Z}_+} | \phi_n(a_n) = a_{n-1} \text{ for all } n\} \subset \prod_n R_n.$$

In other words, it is the set of all compatible systems of elements $a_n \in R_n$, where "compatible" is determined by the ϕ_n .

We make R into a ring in the natural way: $(a_n) + (b_n) = (a_n + b_n)$ and $(a_n)(b_n) = (a_n b_n)$. Prove that this does indeed make R into a ring. There are natural homomorphisms $\psi_n : R \to R_n$ for all n; if you know about "universal properties" you can show that R and the homomorphisms ψ_n satisfy a certain universal property which characterizes them uniquely.

Two somewhat trivial examples: fix a ring R_0 and set $R_n = R_0$ for all $n \ge 1$. If $\phi_n = 0$ for all n, the inverse limit is 0; if we set $\phi_n = id$ for all n, then the inverse limit is just R_0 . See below for a more interesting example.

1.2

Now assume that R_n is finite for all n. Define a topology on R by declaring that the sets $\psi_n^{-1}(a_n)$ for every $n \in \mathbb{Z}_+$ and every $a_n \in R_n$ are a basis for the

topology. Check that this is a legitimate definition. The resulting topology on R is called the *profinite topology*.

Prove that R with its profinitie topology is compact and totally disconnected (i.e., the connected components are points).

1.3

Let p be a prime number and apply the above with $R_n = \mathbb{Z}/p^n\mathbb{Z}$ and $\phi_n : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$ the natural projection. The resulting ring R is denoted \mathbb{Z}_p and is called the ring of p-adic integers. Prove that \mathbb{Z}_p is an integral domain, in fact a principal ideal domain, and that every ideal in \mathbb{Z}_p is of the form $p^e\mathbb{Z}_p$.

Where does p being prime matter?

1.4

Define \mathbb{Q}_p by $\mathbb{Q}_p = \mathbb{Z}_p[1/p]$, or more formally, $\mathbb{Q}_p = \mathbb{Z}_p[x]/(xp-1)$. Topologize \mathbb{Q}_p by requiring that the sets $a + p^e \mathbb{Z}_p$ ($a \in \mathbb{Q}_p$, $e \in \mathbb{Z}$) form a basis for the topology. Prove that \mathbb{Q}_p is a topological field and that \mathbb{Z}_p is its maximal compact subring.

2 Completion construction

2.1

Let X be a metric space, i.e., a set with a distance function d(x,y). Recall that this means that $d(x,y) = 0 \Leftrightarrow x = y$, d(x,y) = d(y,x) and $d(x,y) + d(y,z) \ge d(x,z)$. A Cauchy sequence in X is a sequence of points x_1, x_2, x_3, \ldots such that for every $\epsilon > 0$ there exists an integer N such that $d(x_m, x_n) < \epsilon$ for all m, n > N.

Two Cauchy sequences (x_n) and (y_n) are equivalent if for every $\epsilon > 0$ there exists an integer N such that $d(x_n, y_n) < \epsilon$ for all n > N. Note that this is indeed an equivalence relation.

The completion of X (with respect to d) is by definition the set of equivalence classes of Cauchy sequences in X. Prove that d induces a natural distance function on the completion and that the map which sends an element of X to the "constant" Cauchy sequence gives an isometric embedding of X into its completion.

2.2

Suppose that X is a field (ring, group ,...) and the distance function comes from an absolute value on X (so d(x,y) = |x-y| where $|\cdot|$ satisfies $|x| = 0 \Leftrightarrow x = 0$, $|x+y| \leq |x| + |y|$, and |xy| = |x||y|). Show that the completion is a field too and the map from X to its completion is a field homomorphism.

2.3

The completion of \mathbb{Q} with respect to the usual absolute value is the real numbers. But there are other interesting possibilities for $|\cdot|$. Define the *p-adic absolute value* on \mathbb{Q} by

 $\left| \frac{a}{b} \right| = p^{v_p(b) - v_p(a)}$

where for an integer n, $v_p(n)$ is the power to which p divides n. In other words, $n = p^{v_p(n)}n'$ where $n' \in \mathbb{Z}$ and p does not divide n'.

Prove that the p-adic absolute value is indeed an absolute value. In fact, it satisfies a strong form of the triangle inequality, namely $|x + y| \le \max(|x|, |y|)$, with equality if $|x| \ne |y|$. This is called the non-archimedean triangle inequality.

The non-archimedean triangle inequality has some strange consequences. For example, any point in a ball can serve as the center and every triangle is isosceles.

It is a theorem that up to a natural notion of equivalence the only absolute values on \mathbb{Q} are the usual one and the p-adic ones.

2.4

Applying the general machinery of completions to $X = \mathbb{Q}$ with its p-adic distance, we get a field \mathbb{Q}_p together with an absolute value satisfying the non-archimedean triangle inequality. Prove that \mathbb{Q}_p is totally disconnected.

 \mathbb{Q}_p is a fun place to do calculus. For example, you can check that a series converges in \mathbb{Q}_p if and only if its terms tend to 0!

Define \mathbb{Z}_p to be the closure of \mathbb{Z} in \mathbb{Q}_p with respect to the metric topology. Prove that \mathbb{Z}_p is the maximal compact subring of \mathbb{Q}_p and that $\mathbb{Z}_p = \{x \in \mathbb{Q}_p | |x| \leq 1\}$.

3 Comparing the constructions

3.1

Prove that there is a (unique) field isomorphism between the two versions of \mathbb{Q}_p such that the profinite topology on the inverse limit construction corresponds to the metric topology on the completion construction. Also, the two definitions of \mathbb{Z}_p agree.

Either construction can be used to show that \mathbb{Q}_p is a locally compact topological field. It's a theorem that the only locally compact topological fields are finite extensions of \mathbb{R} (i.e., \mathbb{R} and \mathbb{C}) and finite extensions of \mathbb{Q}_p . (Extensions of \mathbb{Q}_p come in all degrees though.)

3.2

Just as one rarely thinks of real numbers as equivalence classes of Cauchy sequences, one rarely thinks of p-adic numbers that way or in terms of inverse

limits. Here is a convenient way to think of them:

Prove that every p-adic number can be written uniquely as a series of the form $\sum_n a_n p^n$ where $a_n \in \{0, 1, \dots, p-1\}$ for all $n \in \mathbb{Z}$ and $a_n = 0$ for $n \ll 0$. (Note that every real number can be written in a similar way, but where $a_n = 0$ for all $n \gg 0$. Also for reals, there is no need for p to be prime ... p = 10 is the standard choice for humans!)

3.3

There are also useful "Cantor set type" ways to think about the p-adics. Ask Fred Leitner about the Sierpinski triangle and \mathbb{Z}_3 .