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For each prime number p there is a field of p-adic numbers, denoted Qp,
which is complete with respect to a certain absolute value. Essentially any
question that makes sense for the real numbers also makes sense for Qp and in
particular one can develop a calculus of functions f : Qp → Qp. One of the
prevalent ideologies of modern number theory is that if one wants to study Q,
one should first study R and all the fields Qp (p = 2, 3, 5, . . . ) in parallel.

This project gives two constructions of Qp and then proves that they give
the same object.

1 Inverse limit construction

1.1

An inverse system of rings (groups, vector spaces, ...) is a collection of rings Rn

for n = 1, 2, 3, . . . together with ring homomorphisms φn : Rn → Rn−1. The
inverse limit of such a system is by definition

R = {(an)n∈Z+ |φn(an) = an−1 for all n} ⊂
∏
n

Rn.

In other words, it is the set of all compatible systems of elements an ∈ Rn,
where “compatible” is determined by the φn.

We make R into a ring in the natural way: (an) + (bn) = (an + bn) and
(an)(bn) = (anbn). Prove that this does indeed make R into a ring. There are
natural homomorphisms ψn : R → Rn for all n; if you know about “universal
properties” you can show that R and the homomorphisms ψn satisfy a certain
universal property which characterizes them uniquely.

Two somewhat trivial examples: fix a ring R0 and set Rn = R0 for all n ≥ 1.
If φn = 0 for all n, the inverse limit is 0; if we set φn = id for all n, then the
inverse limit is just R0. See below for a more interesting example.

1.2

Now assume that Rn is finite for all n. Define a topology on R by declaring
that the sets ψ−1

n (an) for every n ∈ Z+ and every an ∈ Rn are a basis for the
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topology. Check that this is a legitimate definition. The resulting topology on
R is called the profinite topology .

Prove that R with its profinitie topology is compact and totally disconnected
(i.e., the connected components are points).

1.3

Let p be a prime number and apply the above with Rn = Z/pnZ and φn :
Z/pnZ → Z/pn−1Z the natural projection. The resulting ring R is denoted Zp

and is called the ring of p-adic integers. Prove that Zp is an integral domain, in
fact a principal ideal domain, and that every ideal in Zp is of the form peZp.

Where does p being prime matter?

1.4

Define Qp by Qp = Zp[1/p], or more formally, Qp = Zp[x]/(xp− 1). Topologize
Qp by requiring that the sets a + peZp (a ∈ Qp, e ∈ Z) form a basis for the
topology. Prove that Qp is a topological field and that Zp is its maximal compact
subring.

2 Completion construction

2.1

Let X be a metric space, i.e., a set with a distance function d(x, y). Recall that
this means that d(x, y) = 0 ⇔ x = y, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥
d(x, z). A Cauchy sequence in X is a sequence of points x1, x2, x3, . . . such
that for every ε > 0 there exists an integer N such that d(xm, xn) < ε for all
m,n > N .

Two Cauchy sequences (xn) and (yn) are equivalent if for every ε > 0 there
exists an integer N such that d(xn, yn) < ε for all n > N . Note that this is
indeed an equivalence relation.

The completion ofX (with respect to d) is by definition the set of equivalence
classes of Cauchy sequences in X. Prove that d induces a natural distance
function on the completion and that the map which sends an element of X to
the “constant” Cauchy sequence gives an isometric embedding of X into its
completion.

2.2

Suppose that X is a field (ring, group ,...) and the distance function comes from
an absolute value on X (so d(x, y) = |x− y| where | · | satisfies |x| = 0 ⇔ x = 0,
|x + y| ≤ |x| + |y|, and |xy| = |x||y|). Show that the completion is a field too
and the map from X to its completion is a field homomorphism.
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2.3

The completion of Q with respect to the usual absolute value is the real numbers.
But there are other interesting possibilities for | · |. Define the p-adic absolute
value on Q by ∣∣∣a

b

∣∣∣ = pvp(b)−vp(a)

where for an integer n, vp(n) is the power to which p divides n. In other words,
n = pvp(n)n′ where n′ ∈ Z and p does not divide n′.

Prove that the p-adic absolute value is indeed an absolute value. In fact, it
satisfies a strong form of the triangle inequality, namely |x+ y| ≤ max(|x|, |y|),
with equality if |x| 6= |y|. This is called the non-archimedean triangle inequality.

The non-archimedean triangle inequality has some strange consequences.
For example, any point in a ball can serve as the center and every triangle is
isoceles.

It is a theorem that up to a natural notion of equivalence the only absolute
values on Q are the usual one and the p-adic ones.

2.4

Applying the general machinery of completions to X = Q with its p-adic dis-
tance, we get a field Qp together with an absolute value satisfying the non-
archimedean triangle inequality. Prove that Qp is totally disconnected.

Qp is a fun place to do calculus. For example, you can check that a series
converges in Qp if and only if its terms tend to 0!

Define Zp to be the closure of Z in Qp with respect to the metric topology.
Prove that Zp is the maximal compact subring of Qp and that Zp = {x ∈
Qp| |x| ≤ 1}.

3 Comparing the constructions

3.1

Prove that there is a (unique) field isomorphism between the two versions of Qp

such that the profinite topology on the inverse limit construction corresponds to
the metric topology on the completion construction. Also, the two definitions
of Zp agree.

Either construction can be used to show that Qp is a locally compact topo-
logical field. It’s a theorem that the only locally compact topological fields are
finite extensions of R (i.e., R and C) and finite extensions of Qp. (Extensions
of Qp come in all degrees though.)

3.2

Just as one rarely thinks of real numbers as equivalence classes of Cauchy se-
quences, one rarely thinks of p-adic numbers that way or in terms of inverse
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limits. Here is a convenient way to think of them:
Prove that every p-adic number can be written uniquely as a series of the

form
∑

n anp
n where an ∈ {0, 1, . . . , p− 1} for all n ∈ Z and an = 0 for n� 0.

(Note that every real number can be written in a similar way, but where
an = 0 for all n� 0. Also for reals, there is no need for p to be prime ... p = 10
is the standard choice for humans!)

3.3

There are also useful “Cantor set type” ways to think about the p-adics. Ask
Fred Leitner about the Sierpinski triangle and Z3.
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