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The goal of this project is to prove the Stone-Weierstrass Theorem. In 1885 Weierstrass proved that
on a closed interval every polynomial can be uniformly approximated arbitrarily closely by polynomials.
This result was generalized in 1937 by Stone.

Suppose that we have a collection of continuous functions on a compact Hausdorff space which is
closed under addition, multiplication and scalar multiplication. Also suppose that for any two distinct
points in the space, there is a continuous function in the collection which takes distinct values at these
points. Then the theorem says that this collection approximates any continuous function arbitrarily
closely.

Let X be a compact Hausdorff topological space. Let C(X,R) (respectively, C(X,C)) denote the
set of all continuous real-valued (respectively, complex-valued) functions on X. We provide C(X,R)
and C(X,C) with sup-norm metric. That is, for f, g ∈ C(X,R) or C(X,C), d(f, g) = ‖f − g‖u =
supx∈X |f(x)− g(x)|.

Let A be a subset of C(X,R) (respectively, C(X,C)). A separates points if for every x, y ∈ X,
x 6= y, there exists f ∈ A such that f(x) 6= f(y). A is an subalgebra if A is a real (respectively, complex)
vector subspace of C(X,R) (respectively, C(X,C)) and fg ∈ A whenever f, g ∈ A. A ⊂ C(X,R) is
called a lattice if max(f, g) and min(f, g) are in C(X,R) whenever f and g are.

Exercise: Show that C(X,R) (and therefore C(X,C)) separates points.

Hint: Use the fact that a compact Hausdorff space is normal, hence Urysohn lemma holds.

Example: Let X = {x1, ..., xn} with the discrete topology. Consider h : C(X,R) → Rn defined by
h(f) = (f(x1), . . . , f(xn)). Show that h is an algebra isomorphism if the multiplication in Rn is defined
coordinate-wise.

The Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If A is a closed
subalgebra of C(X,R) which separates points, then either A = C(X,R) or A = {f ∈ C(X,R) : f(x0) =
0} for some x0 ∈ X. The first alternative is the case exactly when A contains all the constant functions
in C(X,R).

We first prove several lemmas. The first lemma is the special case of the theorem for X = {x1, x2}.

Lemma. The only subalgebras of R2 are R2, {(0, 0)}, {(r, 0) : r ∈ R}, {(0, r) : r ∈ R}, {(r, r) : r ∈ R}.

Hint: If a subalgebra A of R2 which contains (a, b) ∈ R2 with a 6= b, a 6= 0 and b 6= 0, then (a2, b2) is
also in A. Conclude that A = R2 in this case. Determine what happens in the cases where there is no
such element in A.

We have to do a little calculus in preparation for the next lemma.

Lemma. The Taylor’s series of f(t) = (1 − t)1/2 at 0 converges absolutely and uniformly to f(t) on
[−1, 1].

Proof: Step 1: Show that the Taylor’s series of f(t) converges absolutely and uniformly on [−1, 1]. Hint:
Use the Stirling’s formula:
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Step 2: Let g(t) be the limit of the Taylor’s series for t ∈ [−1, 1]. Show that 2(1 − t)g′(t) = −g(t) for
t ∈ (−1, 1). Solve this differential equation to conclude that g(t) = f(t) for t ∈ (−1, 1).

Step 3: Note that both f and g are continuous to finish the proofs. �

One of the consequences of Stone-Weierstrass Theorem will be that the polynomials are dense in
C([−1, 1],R) in the uniform norm. In the next lemma we prove that on [−1, 1], |x| is a limit of a
sequence of polynomials which vanish at 0.

Lemma . For any ε > 0 there exists a polynomial with real coefficients such that P (0) = 0 and
||x| − P (x)| < ε for all x ∈ R.

Proof: Step 1: Use the previous lemma to choose a polynomial Q(x) such that |(1− t)1/2−Q(t)| < ε/2
for t ∈ [−1, 1].

Step 2: Let t = 1− x2 and R(x) = Q(1− x2) to get a polynomial R(x) satisfying ||x| −R(x)| < ε/2 for
x ∈ [−1, 1].

Step 3: Finally, use R(x) to construct a polynomial P (x) such that ||x| − P (x)| < ε for x ∈ [−1, 1] and
P (0) = 0. �

Now we prove that every closed subalgebra is a lattice:

Lemma. If A is a closed subalgebra of C(X,R), then |f | ∈ C(X,R) for every f ∈ C(X,R), and A is
a lattice.

Proof: Step 1: Let ε > 0. For 0 6= f ∈ C(X,R) let h = f/‖f‖u, and use the previous lemma to obtain
‖|h| − P ◦ h‖u < ε.

Step 2: Observe that P ◦ h ∈ A.

Step 3: Since A is closed and ε > 0 is arbitrary, conclude that |f | ∈ A. This finishes the proof of the
first claim.

Step 4: Discover a way of expressing max(f, g) and min(f, g) in terms of f and g using the algebra
operations and | · |. Use this to show that A is a lattice. �

The last lemma says that if a closed lattice is sufficiently large, then it is quite large.

Lemma. Let A be a closed lattice of C(X,R). If f ∈ C(X,R)and for every x, y ∈ X there exists
gxy ∈ A such that gxy(x) = f(x) and gxy(y) = f(y), then f ∈ A.

Proof: Step 1: Let ε > 0. For each pair x, y ∈ X let Uxy = {z ∈ X : f(z) < gxy(z) + ε} and
Vxy = {z ∈ X : f(z) > gxy(z)− ε}. Show that these sets open and contain x and y.

Step 2: Fix y. As x ranges over X, the sets Uxy cover X. Use compactness to find a finite subcover
corresponding to a finite set of points, say, x1, . . . , xn ∈ X. Let gy = max(gx1y, gx2y, . . . , gxny). Then
f < gy + ε on X and f > gy − ε on the open set Vy =

⋂
1≤i≤n Vxiy which contains y.

Step 3: Now as y ranges over X, the sets Vy form an open cover of X. Get a finite subcover corresponding
to the points, say, y1, y2, . . . , ym ∈ X and let g = min(gy1 , gy2 , . . . , gym). Then ||f − g||u < ε.

Step 4: Use the fact that A is a closed lattice to finish the proof. �

We are now ready to prove the Stone-Weierstrass Theorem.
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Proof of The Stone-Weierstrass Theorem: Step 1: For any pair of distinct points x, y ∈ X, let Axy =
{(f(x), f(y)) : f ∈ A} ⊂ R2. Observe that Axy is a subalgebra of R2.

Step 2: Use The last two lemmas to conclude that A = C(X,R) if Axy = R2 for all x, y.

Step 3: If not, then there exist x, y such that Axy is a proper subalgebra of R2. Use the first lemma
to decide which subalgebra it can be. Conclude that there exists x0 ∈ X such that f(x0) = 0 for all
f ∈ A.

Step 4: Show that x0 is unique since A separates points.

Step 5: Use The last two lemmas again to conclude that A = {f ∈ C(X,R) : f(x0) = 0}.

Step 6: Finally observe that this can not be the case if A contains the constant functions. �

Corollary. Let X be a compact subset of Rn. Then the set of all polynomials is dense in C(X,R).

Remark: We want to prove a complex version of Stone-Weierstrass Theorem. But this would not be
true without a further assumption: Consider the unit circle X = {z ∈ C : |z| = 1} in the complex
plane C. Then the polynomials in z with complex coefficients will separate points in X, but they will
not be dense in C(X,C). For instance, f(z) = z̄ is not a limit of polynomials.

Exercise: Show that for 0 < ε < 1 there is no polynomial P (z) such that |z̄−P (z)| < ε for all |z| = 1.

Hint: Show that
∫
X zP (z)dz = 0. Then compute

∫
X |z|2dz using |z|2 = z(z̄ − P (z)) + zP (z) to obtain

a contradiction.

The Complex Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If
A is a closed subalgebra of C(X,C) which separates points and is closed under complex conjugation,
then either A = C(X,C) or A = {f ∈ C(X,C) : f(x0) = 0} for some x0 ∈ X. The first alternative is
the case exactly when A contains all the constant functions in C(X,C).

Hint: Apply the Stone-Weierstrass Theorem to the subalgebra AR of C(X,R) consisting of all (f +f̄)/2
and (f − f̄)/(2i) for f ∈ A.
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