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The goal of this project is to prove the Stone-Weierstrass Theorem. In 1885 Weierstrass proved that
on a closed interval every polynomial can be uniformly approximated arbitrarily closely by polynomials.
This result was generalized in 1937 by Stone.

Suppose that we have a collection of continuous functions on a compact Hausdorff space which is
closed under addition, multiplication and scalar multiplication. Also suppose that for any two distinct
points in the space, there is a continuous function in the collection which takes distinct values at these
points. Then the theorem says that this collection approximates any continuous function arbitrarily
closely.

Let X be a compact Hausdorff topological space. Let C(X,R) (respectively, C'(X, C)) denote the
set of all continuous real-valued (respectively, complex-valued) functions on X. We provide C(X,R)
and C(X,C) with sup-norm metric. That is, for f,g € C(X,R) or C(X,C), d(f,g9) = ||f — gllu =

supex | f(z) — g(@)].
Let A be a subset of C(X,R) (respectively, C'(X,C)). A separates points if for every z,y € X,

x # y, there exists f € A such that f(z) # f(y). Ais an subalgebra if A is a real (respectively, complex)
vector subspace of C(X,R) (respectively, C(X,C)) and fg € A whenever f,g € A. AC C(X,R) is
called a lattice if max(f, g) and min(f,g) are in C(X,R) whenever f and g are.

Exercise: Show that C(X,R) (and therefore C(X, C)) separates points.

Hint: Use the fact that a compact Hausdorff space is normal, hence Urysohn lemma holds.

Example: Let X = {z1,...,z,} with the discrete topology. Consider h : C'(X,R) — R" defined by
h(f) = (f(z1),..., f(xy)). Show that h is an algebra isomorphism if the multiplication in R™ is defined
coordinate-wise.

The Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If A is a closed
subalgebra of C(X,R) which separates points, then either A= C(X,R) or A={f € C(X,R): f(x9) =
0} for some xy € X. The first alternative is the case exactly when A contains all the constant functions
in C(X,R).

We first prove several lemmas. The first lemma is the special case of the theorem for X = {z1,x2}.
Lemma. The only subalgebras of R? are R?, {(0,0)}, {(r,0) : » € R}, {(0,7) : 7 € R}, {(r,7) : 7 € R}.

Hint: If a subalgebra A of R? which contains (a,b) € R? with a # b, a # 0 and b # 0, then (a?,b?) is
also in A. Conclude that A = R? in this case. Determine what happens in the cases where there is no
such element in A.

We have to do a little calculus in preparation for the next lemma.

Lemma. The Taylor’s series of f(t) = (1 —t)'/2 at 0 converges absolutely and uniformly to f(t) on
[—1,1].

Proof: Step 1: Show that the Taylor’s series of f(t) converges absolutely and uniformly on [—1, 1]. Hint:
Use the Stirling’s formula:
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Step 2: Let g(t) be the limit of the Taylor’s series for ¢t € [—1,1]. Show that 2(1 —¢)¢'(¢t) = —g(t) for
t € (—1,1). Solve this differential equation to conclude that g(¢t) = f(¢) for t € (—1,1).

Step 3: Note that both f and g are continuous to finish the proofs. [l

One of the consequences of Stone-Weierstrass Theorem will be that the polynomials are dense in
C([-1,1],R) in the uniform norm. In the next lemma we prove that on [—1,1], |z| is a limit of a
sequence of polynomials which vanish at 0.

Lemma. For any ¢ > 0 there exists a polynomial with real coefficients such that P(0) = 0 and
||z| — P(z)| < € for all z € R.

Proof: Step 1: Use the previous lemma to choose a polynomial Q(z) such that |(1 —t)Y/2 — Q(t)| < €/2
for t € [-1,1].

Step 2: Let t = 1 — 22 and R(z) = Q(1 — 2?) to get a polynomial R(x) satisfying ||z| — R(x)| < €/2 for
x € [-1,1].

Step 3: Finally, use R(x) to construct a polynomial P(z) such that ||z| — P(z)| < € for x € [-1, 1] and
P(0) = 0. O

Now we prove that every closed subalgebra is a lattice:

Lemma. If A is a closed subalgebra of C(X,R), then |f| € C(X,R) for every f € C(X,R), and A is
a lattice.

Proof: Step 1: Let € > 0. For 0 # f € C(X,R) let h = f/||f]lu, and use the previous lemma to obtain
[|h] — Poh|, <e.

Step 2: Observe that Po h € A.

Step 3: Since A is closed and € > 0 is arbitrary, conclude that |f| € A. This finishes the proof of the
first claim.

Step 4: Discover a way of expressing max(f, g) and min(f,g) in terms of f and ¢ using the algebra
operations and | - |. Use this to show that A is a lattice. O

The last lemma says that if a closed lattice is sufficiently large, then it is quite large.

Lemma. Let A be a closed lattice of C(X,R). If f € C(X,R)and for every xz,y € X there exists
Guy € A such that gy (z) = f(x) and g.y(y) = f(y), then f € A.

Proof: Step 1: Let € > 0. For each pair z,y € X let Uy = {z € X : f(2) < gay(2) + €} and
Viy = {2 € X : f(2) > guy(2) — €}. Show that these sets open and contain z and y.

Step 2: Fix y. As z ranges over X, the sets U, cover X. Use compactness to find a finite subcover
corresponding to a finite set of points, say, x1,...,2, € X. Let g, = max(gz,y, Jzoy: - - - » Gzny). LThen
f<gy+eon X and f > g, — € on the open set Vy =();-,;<,, Va,y Which contains y.

Step 3: Now as y ranges over X, the sets V;, form an open cover of X. Get a finite subcover corresponding
to the points, say, y1,¥2,...,ym € X and let g = min(gy,, gyo, - - - » Gy, )- Then ||f — g||u < €.

Step 4: Use the fact that A is a closed lattice to finish the proof. O

We are now ready to prove the Stone-Weierstrass Theorem.



Proof of The Stone-Weierstrass Theorem: Step 1: For any pair of distinct points z,y € X, let A,y =
{(f(z), f(y)) : f € A} C R% Observe that A, is a subalgebra of R

Step 2: Use The last two lemmas to conclude that A = C(X,R) if A,, = R? for all z,y.

Step 3: If not, then there exist x,y such that A, is a proper subalgebra of R2. Use the first lemma
to decide which subalgebra it can be. Conclude that there exists 29 € X such that f(xo) = 0 for all
feA

Step 4: Show that x( is unique since A separates points.

Step 5: Use The last two lemmas again to conclude that A= {f € C(X,R) : f(zo) = 0}.

Step 6: Finally observe that this can not be the case if A contains the constant functions. O
Corollary. Let X be a compact subset of R"™. Then the set of all polynomials is dense in C(X,R).

Remark: We want to prove a complex version of Stone-Weierstrass Theorem. But this would not be
true without a further assumption: Consider the unit circle X = {z € C : |z| = 1} in the complex
plane C. Then the polynomials in z with complex coefficients will separate points in X, but they will
not be dense in C(X, C). For instance, f(z) = Z is not a limit of polynomials.

Exercise: Show that for 0 < ¢ < 1 there is no polynomial P(z) such that |z — P(z)| < € for all |z| = 1.

Hint: Show that [y zP(z)dz = 0. Then compute [y |z|?dz using |z|* = z(z — P(2)) + 2P(z) to obtain
a contradiction.

The Complex Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If
A is a closed subalgebra of C(X,C) which separates points and is closed under complex conjugation,
then either A= C(X,C) or A= {f € C(X,C) : f(xg) =0} for some o € X. The first alternative is
the case exactly when A contains all the constant functions in C(X, C).

Hint: Apply the Stone-Weierstrass Theorem to the subalgebra Ag of C(X, R) consisting of all (f+ f)/2

and (f — f)/(2i) for f € A.



