Integration Workshop 2005 Project on the Stone-Weierstrass Theorem

Feryâl Alayont

The goal of this project is to prove the Stone-Weierstrass Theorem. In 1885 Weierstrass proved that on a closed interval every polynomial can be uniformly approximated arbitrarily closely by polynomials. This result was generalized in 1937 by Stone.

Suppose that we have a collection of continuous functions on a compact Hausdorff space which is closed under addition, multiplication and scalar multiplication. Also suppose that for any two distinct points in the space, there is a continuous function in the collection which takes distinct values at these points. Then the theorem says that this collection approximates any continuous function arbitrarily closely.

Let X be a compact Hausdorff topological space. Let $C(X, \mathbf{R})$ (respectively, $C(X, \mathbf{C})$) denote the set of all continuous real-valued (respectively, complex-valued) functions on X. We provide $C(X, \mathbf{R})$ and $C(X, \mathbf{C})$ with sup-norm metric. That is, for $f, g \in C(X, \mathbf{R})$ or $C(X, \mathbf{C})$, $d(f, g) = ||f - g||_u = \sup_{x \in X} |f(x) - g(x)|$.

Let \mathcal{A} be a subset of $C(X, \mathbf{R})$ (respectively, $C(X, \mathbf{C})$). \mathcal{A} separates points if for every $x, y \in X$, $x \neq y$, there exists $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. \mathcal{A} is an subalgebra if \mathcal{A} is a real (respectively, complex) vector subspace of $C(X, \mathbf{R})$ (respectively, $C(X, \mathbf{C})$) and $fg \in \mathcal{A}$ whenever $f, g \in \mathcal{A}$. $\mathcal{A} \subset C(X, \mathbf{R})$ is called a *lattice* if $\max(f, g)$ and $\min(f, g)$ are in $C(X, \mathbf{R})$ whenever f and g are.

Exercise: Show that $C(X, \mathbf{R})$ (and therefore $C(X, \mathbf{C})$) separates points.

<u>Hint:</u> Use the fact that a compact Hausdorff space is normal, hence Urysohn lemma holds.

Example: Let $X = \{x_1, ..., x_n\}$ with the discrete topology. Consider $h : C(X, \mathbf{R}) \to \mathbf{R}^n$ defined by $h(f) = (f(x_1), ..., f(x_n))$. Show that h is an algebra isomorphism if the multiplication in \mathbf{R}^n is defined coordinate-wise.

The Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbf{R})$ which separates points, then either $\mathcal{A} = C(X, \mathbf{R})$ or $\mathcal{A} = \{f \in C(X, \mathbf{R}) : f(x_0) = 0\}$ for some $x_0 \in X$. The first alternative is the case exactly when \mathcal{A} contains all the constant functions in $C(X, \mathbf{R})$.

We first prove several lemmas. The first lemma is the special case of the theorem for $X = \{x_1, x_2\}$.

Lemma. The only subalgebras of \mathbb{R}^2 are \mathbb{R}^2 , $\{(0,0)\}$, $\{(r,0): r \in \mathbb{R}\}$, $\{(0,r): r \in \mathbb{R}\}$, $\{(r,r): r \in \mathbb{R}\}$.

<u>Hint</u>: If a subalgebra \mathcal{A} of \mathbb{R}^2 which contains $(a, b) \in \mathbb{R}^2$ with $a \neq b$, $a \neq 0$ and $b \neq 0$, then (a^2, b^2) is also in \mathcal{A} . Conclude that $\mathcal{A} = \mathbb{R}^2$ in this case. Determine what happens in the cases where there is no such element in \mathcal{A} .

We have to do a little calculus in preparation for the next lemma.

Lemma. The Taylor's series of $f(t) = (1 - t)^{1/2}$ at 0 converges absolutely and uniformly to f(t) on [-1, 1].

Proof: Step 1: Show that the Taylor's series of f(t) converges absolutely and uniformly on [-1, 1]. Hint: Use the Stirling's formula:

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi} n^{n + \frac{1}{2}} e^{-n}} = 1.$$

<u>Step 2</u>: Let g(t) be the limit of the Taylor's series for $t \in [-1, 1]$. Show that 2(1-t)g'(t) = -g(t) for $t \in (-1, 1)$. Solve this differential equation to conclude that g(t) = f(t) for $t \in (-1, 1)$.

Step 3: Note that both f and g are continuous to finish the proofs.

One of the consequences of Stone-Weierstrass Theorem will be that the polynomials are dense in $C([-1,1], \mathbf{R})$ in the uniform norm. In the next lemma we prove that on [-1,1], |x| is a limit of a sequence of polynomials which vanish at 0.

Lemma. For any $\epsilon > 0$ there exists a polynomial with real coefficients such that P(0) = 0 and $||x| - P(x)| < \epsilon$ for all $x \in \mathbf{R}$.

Proof: Step 1: Use the previous lemma to choose a polynomial Q(x) such that $|(1-t)^{1/2} - Q(t)| < \epsilon/2$ for $t \in [-1, 1]$.

Step 2: Let $t = 1 - x^2$ and $R(x) = Q(1 - x^2)$ to get a polynomial R(x) satisfying $||x| - R(x)| < \epsilon/2$ for $x \in [-1, 1]$.

Step 3: Finally, use R(x) to construct a polynomial P(x) such that $||x| - P(x)| < \epsilon$ for $x \in [-1, 1]$ and $\overline{P(0)} = 0$.

Now we prove that every closed subalgebra is a lattice:

Lemma. If \mathcal{A} is a closed subalgebra of $C(X, \mathbf{R})$, then $|f| \in C(X, \mathbf{R})$ for every $f \in C(X, \mathbf{R})$, and \mathcal{A} is a lattice.

Proof: Step 1: Let $\epsilon > 0$. For $0 \neq f \in C(X, \mathbf{R})$ let $h = f/||f||_u$, and use the previous lemma to obtain $||h| - \overline{P \circ h}||_u < \epsilon$.

Step 2: Observe that $P \circ h \in \mathcal{A}$.

<u>Step 3:</u> Since \mathcal{A} is closed and $\epsilon > 0$ is arbitrary, conclude that $|f| \in \mathcal{A}$. This finishes the proof of the first claim.

Step 4: Discover a way of expressing $\max(f,g)$ and $\min(f,g)$ in terms of f and g using the algebra operations and $|\cdot|$. Use this to show that \mathcal{A} is a lattice.

The last lemma says that if a closed lattice is sufficiently large, then it is quite large.

Lemma. Let \mathcal{A} be a closed lattice of $C(X, \mathbf{R})$. If $f \in C(X, \mathbf{R})$ and for every $x, y \in X$ there exists $g_{xy} \in \mathcal{A}$ such that $g_{xy}(x) = f(x)$ and $g_{xy}(y) = f(y)$, then $f \in \mathcal{A}$.

Proof: Step 1: Let $\epsilon > 0$. For each pair $x, y \in X$ let $U_{xy} = \{z \in X : f(z) < g_{xy}(z) + \epsilon\}$ and $V_{xy} = \{\overline{z \in X} : f(z) > g_{xy}(z) - \epsilon\}$. Show that these sets open and contain x and y.

Step 2: Fix y. As x ranges over X, the sets U_{xy} cover X. Use compactness to find a finite subcover corresponding to a finite set of points, say, $x_1, \ldots, x_n \in X$. Let $g_y = \max(g_{x_1y}, g_{x_2y}, \ldots, g_{x_ny})$. Then $f < g_y + \epsilon$ on X and $f > g_y - \epsilon$ on the open set $V_y = \bigcap_{1 \le i \le n} V_{x_iy}$ which contains y.

Step 3: Now as y ranges over X, the sets V_y form an open cover of X. Get a finite subcover corresponding to the points, say, $y_1, y_2, \ldots, y_m \in X$ and let $g = \min(g_{y_1}, g_{y_2}, \ldots, g_{y_m})$. Then $||f - g||_u < \epsilon$.

Step 4: Use the fact that \mathcal{A} is a closed lattice to finish the proof.

We are now ready to prove the Stone-Weierstrass Theorem.

Proof of The Stone-Weierstrass Theorem: Step 1: For any pair of distinct points $x, y \in X$, let $\mathcal{A}_{xy} = \{(f(x), f(y)) : f \in \mathcal{A}\} \subset \mathbb{R}^2$. Observe that $\overline{\mathcal{A}_{xy}}$ is a subalgebra of \mathbb{R}^2 .

Step 2: Use The last two lemmas to conclude that $\mathcal{A} = C(X, \mathbf{R})$ if $\mathcal{A}_{xy} = \mathbf{R}^2$ for all x, y.

Step 3: If not, then there exist x, y such that \mathcal{A}_{xy} is a proper subalgebra of \mathbb{R}^2 . Use the first lemma to decide which subalgebra it can be. Conclude that there exists $x_0 \in X$ such that $f(x_0) = 0$ for all $f \in \mathcal{A}$.

Step 4: Show that x_0 is unique since \mathcal{A} separates points.

Step 5: Use The last two lemmas again to conclude that $\mathcal{A} = \{f \in C(X, \mathbf{R}) : f(x_0) = 0\}.$

Step 6: Finally observe that this can not be the case if \mathcal{A} contains the constant functions.

Corollary. Let X be a compact subset of \mathbb{R}^n . Then the set of all polynomials is dense in $C(X, \mathbb{R})$.

Remark: We want to prove a complex version of Stone-Weierstrass Theorem. But this would not be true without a further assumption: Consider the unit circle $X = \{z \in \mathbf{C} : |z| = 1\}$ in the complex plane \mathbf{C} . Then the polynomials in z with complex coefficients will separate points in X, but they will not be dense in $C(X, \mathbf{C})$. For instance, $f(z) = \overline{z}$ is not a limit of polynomials.

Exercise: Show that for $0 < \epsilon < 1$ there is no polynomial P(z) such that $|\bar{z} - P(z)| < \epsilon$ for all |z| = 1. <u>Hint:</u> Show that $\int_X zP(z)dz = 0$. Then compute $\int_X |z|^2 dz$ using $|z|^2 = z(\bar{z} - P(z)) + zP(z)$ to obtain a contradiction.

The Complex Stone-Weierstrass Theorem. Let X be a compact Hausdorff topological space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbb{C})$ which separates points and is closed under complex conjugation, then either $\mathcal{A} = C(X, \mathbb{C})$ or $\mathcal{A} = \{f \in C(X, \mathbb{C}) : f(x_0) = 0\}$ for some $x_0 \in X$. The first alternative is the case exactly when \mathcal{A} contains all the constant functions in $C(X, \mathbb{C})$.

<u>Hint:</u> Apply the Stone-Weierstrass Theorem to the subalgebra $\mathcal{A}_{\mathbf{R}}$ of $C(X, \mathbf{R})$ consisting of all $(f + \bar{f})/2$ and $(f - \bar{f})/(2i)$ for $f \in \mathcal{A}$.