THE TYCHONOFF THEOREM!

The Tychonoff theorem asserts that the product of an arbitrary number of compact spaces
is compact in the product topology. In Lecture Three we have proved this result for finitely
many spaces, but unfortunately, the same method does not work for infinite products.
The purpose of this project is to give a proof to the Tychonoff theorem in several steps.

First, one possible reformulation of the definition of compactness, which uses closed, rather
than open sets is based upon the following notion:

Definition 1 A collection A of subsets of a topological space X is said to have the finite
intersection property (FIP) if the intersection of any finite subcollection is non-empty.

Now we will state and prove an equivalent definition of compactness:

Theorem 2 A topological space X is compact iff every collection of closed subsets of X
with the FIP has a non-empty common intersection.

Sketch of proof. Given a collection A of subsets of X, let C be the collection of their
complements. Then A is a collection of open sets iff C is a collection of closed sets. The
collection A is a covering of X iff the common intersection of subsets from C is empty.
And, A has a finite subcovering iff there exist finitely many sets from C with empty
intersection. Now, to prove the theorem, use the original definition of compactness and
apply the contrapositive statement to the complements. ()

The rough idea of our proof of the Tychonoff theorem is as follows. For a given collection
of closed subsets A of the product space [[, X, with the FIP we will choose a largest
collection C D A of closed subsets with the FIP and then for each « consider the projection
of this collection 7,(C) via the natural continuous projection maps 7, : X — X,. Then
we will see that after taking the closures, this collection also has the FIP, and since X, is
compact, we can choose a point z, in their common intersection. At last, we will prove
that the point [], z, lies in the common intersection of all the given closed sets.

Now we will proceed with the details and start with the following:

Lemma 3 Let A be a collection of subsets of X, which has the FIP. Then there is a
collection D of subsets of X such that A C D, D has the FIP, and there is no larger
collection of subsets of X, that properly contains D, with this property.

Sketch of proof. The proof is based on Zorn’s lemma, which says that any set A with
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strict partial ordering, in which every simply ordered subset has an upper bound, has a
maximal element.

Let A be the set whose elements are all collections B of subsets of X such that A C B and
B has the FIP. The strict partial ordering on A is denoted by C . To prove the lemma,
we must show that A has a maximal element D.

Let B be a subset of A, that is simply ordered by C. Show that the collection
C= U B
BeB

is an element of A, which is the required upper bound on B in two steps: first, show that
A C C and second, that C has the FIP.

Finally, apply Zorn’s lemma. ()

Next statement is a rather straightforward, yet necessary step towards the main result.

Lemma 4 Let D be a collection of subsets of X, which is mazimal w.r.t. the FIP.
(a) Any finite intersection of elements from D is an element of D.

(b) If S is any subset of X, which intersects every subset from D, then S is in D as well.

Proof. Fill in the details! O

Now we are ready for the final strike.

Theorem 5 (Tychonoff theorem) Let

X = H X
acJ
be the product of compact topological spaces with the product topology. Then the space X
18 compact.

Sketch of proof. Start with a collection A of closed subsets of X with the FIP. Use Lemma
3 to choose a collection D containing A, which is maximal w.r.t. the FIP. Determine that
it would be sufficient to show that the common intersection of the closures of the subsets
from D is nonempty:

N D#0 .
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Next, for a given a € J show that the collection

{ma(D), for D € D}



has the FIP and use the compactness of X, to choose a point

x= [[za . where z, € [ m(D) .
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Finally, one must show that x € D for every D € D. This is where we get to use the
product topology and it is done in two steps.

First, show that if Ug is an open set in X containing 75(x), then WB_I(U 3) intersects every
element of D.

And second, use Lemma 4 to show that every basis element of the product topology of X
containing x belongs to D.

Finally, use the FIP of D to see that every basis element containing x intersects every
element of D, and hence x € D for every D € D. ()



