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The Urysohn Metrization Theorem tells us under which conditions a topological space

X is metrizable, i.e. when there exists a metric on the underlying set of X that induces

the topology of X. The main idea is to impose such conditions on X that will make it

possible to embed X into a metric space Y , by homeomorphically identifying X with a

subspace of Y .

Let us start with some definitions. A T1-space X (i.e. the space in which one-point

sets are closed) is said to be regular if for any point x ∈ X and any closed set B ⊂ X

not containing x, there exist two disjoint open sets containing x and B respectively. The

space X is said to be normal if for any two disjoint closed sets B1 and B2 there exist two

disjoint open sets containing B1 and B2 respectively.

Example. An example of a Hausdorff space which is not normal is given by the set R,

where the usual topology is enhanced by requiring that the set {1/n | n ∈ N} is closed.

Examples of spaces which are regular but not normal exist, but are complicated.

Lemma. Every regular space with a countable basis is normal.

Proof. First, using regularity and countable basis, construct a countable covering {Ui} of

B1 by open sets whose closures do not intersect B2. Similarly, construct an open countable

covering {Vi} of B2 disjoint from B1. Then define

U ′
n := Un \

n⋃
i=1

V̄i and V ′
n := Vn \

n⋃
i=1

Ūi.

Show that these sets are open and the the collection {U ′
n} covers B1 and {V ′

n} covers B2.

Finally show that U ′ := ∪U ′
n and V ′ := ∪V ′

n are disjoint. ©

Next, we will prove one of the very deep basic results.

Urysohn lemma. Let X be a normal space, and let A and B be disjoint closed subsets

of X. There exists a continuous map f : X → [0, 1] such that f(x) = 0 for every x ∈ A,

and f(x) = 1 for every x ∈ B.

Proof. Let Q be the set of rational numbers on the interval [0, 1]. For each rational

number q on this interval we will define an open set Uq ⊂ X such that whenever p < q,

we have Ūp ⊂ Uq. Hint: enumerate all the rational numbers on the interval (so that the
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first two elements are 1 and 0) and then define U1 = X \ B and all other Uq’s can be

defined inductively by using normality of X.

Now let us extend the definition of Uq to all rational numbers by defining Uq = ∅ if q is

negative, and Uq = X if q > 1.

Next, for each x ∈ X define Q(x) to be the set of those rational numbers such that the

corresponding set Uq contains x. Show that Q(x) is bounded below and define f(x) as its

infimum.

Now we will show that f(x) is the desired function. First, show that if x ∈ Ūr, then

f(x) ≤ r, and if x /∈ Ur, then f(x) ≥ r.

Now prove the continuity of f(x) by showing that for any x0 ∈ X and an open interval

(c, d) containing f(x0), there exist a neighbourhood U of x0 such that f(U) ⊂ (c, d). [Why

would this imply continuity?] For this choose two rational numbers q1 and q2 such that

c < q1 < f(x0) < q2 < d and take U = Uq2 \ Ūq1 . ©

Next, we will construct the metric space Y for the embedding. Actually, as a topological

space, the space Y is simply the product of N copies of R with the product topology. Let

d̄(a, b) = min{|a − b|, 1} be the so-called standard bounded metric on R [show that this

is indeed a metric]. Then if x and y are two points of Y , define

D(x,y) = sup

{
d̄(xi, yi)

i

}
.

Show that this is indeed a metric.

Proposition. The metric D induces the product topology on Y = RN.

Proof. First, let U be open in the metric topology and let x ∈ U . We will find an open

set V in the product topology such that x ⊂ V ⊂ U . Choose an ε-ball centered at x,

which lies in U . Then choose N large enough so 1/N < ε. Show that the following set

satisfies the requirement:

V = (x1 − ε, x1 + ε)× · · · × (xN − ε, xN + ε)× R× R× · · · .

Conversely, consider a basis element V =
∏

i∈N Vi for the product topology, such that

Vi is open in R and Vi = R for all but finitely many indices i1, ..., iK . Given x ∈ V , we will

find an open ball U in metric topology, which contains x and is contained in V . Choose

an interval (xi − εi, xi + εi) contained in Vi such that εi < 1 and define

ε = min{εi/i | i = i1, ..., iK}.

Now show that the ball of radius ε centered at x is contained in V . ©

Next we need the following technical result:

Lemma. Let X be a regular space with a countable basis. There exists a countable

collection of continuous functions fn : X → [0, 1] such that for any x0 ∈ X and any



THE URYSOHN METRIZATION THEOREM 3

neighbourhood U of x0, there exists an index n such that fn(x0) > 0 and fn = 0 outside

U .

Proof. Given x0 and U , use regularity to choose two open sets Bn and Bm from the

countable basis containing x0 and contained in U such that B̄n ⊂ Bm. Then use the

Urysohn lemma to construct a function gn,m such that gn,m(B̄n) = 1 and gn,m(X\Bm) = 0.

Now show that this collection of functions satisfies our requirement. ©

Finally we will prove the main result:

Urysohn Metrization Theorem. Every regular space X with a countable basis is

metrizable.

Proof. Given the collection of functions {fn} from the previous lemma, and Y = RN with

the product topology, we define a map F : X → Y as follows:

F (x) = (f1(x), f2(x), ...).

Show that this is a continuous map. Also show that it is injective.

In order to finish the proof, we need to show that for each open set U in X, the set

F (U) is open in F (X). Let z0 be a point of F (U). Let x0 ∈ U be such that F (x0) = z0

and choose an index N such that fN(x0) > 0 and fN(X \ U) = 0. Now we let

W = π−1
N ((0,∞)) ∩ f(X),

where πN is the projection Y → R onto the Nth multiple. Show that W is an open subset

of F (X) such that z0 ∈ W ⊂ F (U). ©

Give an example of a Hausdorff space with a countable basis which is not metrizable.


