
Topology Lectures �Integration workshop 2017

David Glickenstein

August 2, 2017

Abstract
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integration workshops written by Philip Foth, Tom Kennedy, Shankar
Venkataramani and others.

1 Introduction to topology

1.1 Topology theorems

The basics of point set topology arise from trying to understand the following
theorems from basic calculus: (in the following, we assume intervals written
[a; b] have the property a < b so that they are not empty)

Theorem 1 (Intermediate Value Theorem) If f : [a; b] ! R is a contin-
uous function, and y is a number between f (a) and f (b) then there exists
x 2 [a; b] such that f (x) = y:

Theorem 2 (Extreme Value Theorem) If f : [a; b] ! R is a continuous
function, then there are numbers xm; xM 2 [a; b] such that

f (xm) = min ff (x) : x 2 [a; b]g ;
f (xM ) = max ff (x) : x 2 [a; b]g :

Here are some other interesting theorems in topology that we will not prove
here:

Theorem 3 (Jordan Curve Theorem) Any continuous simple closed curve
in the plane, separates the plane into two disjoint regions, the inside and the
outside.

Theorem 4 (Jordan-Schoen�eiss Theorem) For any simple closed curve
in the plane, there is a homeomorphism of the plane which takes that curve into
the standard circle.
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Theorem 5 (Generalized Jordan Curve Theorem) Any embedding of the
(n� 1)-dimensional sphere into n-dimensional Euclidean space separates the
Euclidean space into two disjoint regions.

Theorem 6 (Brouwer Fixed Point Theorem) Any continuous function from
the closed disk in Rn to itself has a �xed point.

Theorem 7 (Borsuk-Ulam Theorem) If f : S2 ! R2 is continuous, then
there exists a point x 2 S2 such that f (x) = f (�x) :

Theorem 8 (Invariance of Dimension) No nonempty open subset of Rn is
homeomorphic to an open subset of Rm if m 6= n:

1.2 Topology of Rn

For motivation, we recall what open and closed sets look like in Rn. A set
U � Rn is open if for any x 2 U there is a ball centered at x contained in U:
A set F is closed if it contains all of its limit points, i.e., for every convergent
sequence that is in F , the limit is in F . It can be shown that a set in Rn is
closed if and only if its complement is open.
Let f be a function from Rn to Rk or from U to Rk where U is an open set

in Rn. Then the �� � de�nition of continuity for f at x0 is that 8� > 0,9� > 0
such that jjx � x0jj < � implies jjf(x) � f(x0)jj < �. (Here jj jj denotes the
usual distance function in Rn or Rk.) If f is continuous at every point in its
domain we say it is continuous. It then follows that f is continuous under this
� � � de�nition if and only if, for all open subsets U in Rk, f�1(U) is open in
Rn.
The only structure of Rn that we need in the above is the ability to measure

the distance betweeen two points in the space. So we can immediately generalize
the above to a metric space. The above shows more, namely that we can do a
lot if we just know what the open sets are, not the metric they came from. So
we can abstract things by just looking at the collection of open sets. Note that
the open sets in Rn, and more generally the open sets in a metric space, have
some obvious properties. The empty set and the whole space are open. Any
union of open sets is an open set. Any �nite intersection of open sets is open.
These observations will be the basis for the de�nition of a topology.

1.3 Metric spaces

De�nition 9 A metric space (X; d) is a set X and a function (called the metric)
d : X �X ! R such that for all x; y; z 2 X; the metric satis�es:

1. (positive de�nite) d (x; y) � 0 with d (x; y) = 0 if and only if x = y

2. (symmetric) d (x; y) = d (y; x)

3. (triangle inequality) d (x; z) � d (x; y) + d (y; z)
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De�nition 10 In a metric space (X; d), a set U is said to be open if 8x 2 U ,
9� > 0 such that d(y; x) < � implies y 2 U .

Proposition 11 Let (X; d) be a metric space and let T be the collection of open
sets in X. Then

1. X 2 T and ? 2 T ,

2. Arbitrary unions of sets U 2 T are in T , i.e., for any indexing set I; if
Ui 2 T for all i 2 I then

[
i2I
Ui 2 T ,

3. If U; V 2 T then U \ V 2 T .

For any set X, we will de�ne a collection of subsets T of X to be a topology
for X if it satis�es the three properties above. Note that property 3 immediately
implies by induction that a �nite intersection of open sets produces an open set.

De�nition 12 A sequence xn in a metric space (X; d) converges to a point
x 2 X if 8� > 0, there exists an index N <1 such that n > N =) d(xn; x) <
�.

De�nition 13 A subset F of a metric space (X; d) is closed if for every se-
quence xn in F which converges to some x in X we have x 2 F .

Proposition 14 A set F is closed if and only if FC = X n F is open.

Corollary 15 Arbitrary intersections and �nite unions of closed sets are closed.

De�nition 16 The interior of a set A; denoted
�
A or int(A), is

int(A) = fx : 9� > 0 s:t: d(x; y) < � =) y 2 Ag

The closure of a set A; denoted �A or cl(A), is

cl(A) = fx : 8� > 0 9y 2 A s:t: d(x; y) < �g

Proposition 17 The interior of a set A is the union of all open sets contained
in A: The closure of a set A is the intersection of all closed sets containing A.

Note that the proposition shows that the interior is open since it is a union
of open sets, and the closure is closed since it is an intersection of closed sets.

If the space X is a vector space, then one way to get a metric on X is to
start with a norm.

De�nition 18 A function jj jj on X is a norm if

� For all x 2 X, jjxjj � 0, and jjxjj = 0 if and only if x = 0.

� jjaxjj = jajjjxjj for every a 2 R and x 2 X.
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� jjx+ yjj � jjxjj+ jjyjj for every x; y 2 X.

A normed space is a vector space with a norm de�ned on it.

Proposition 19 Let (X; jj jj) be a normed space. De�ne d(x; y) = jjx � yjj.
Then (X; d) is a metric space.

We end this section with some examples of metric spaces.

1. Euclidean metric on Rn: The usual Euclidean norm gives a metric on
Rn.

d(x; y) = jjx� yjj =

24 nX
j=1

jxj � yj j2
351=2

2. R with a di¤erent topology: De�ne a metric on X by

d(x; y) =
jx� yj

1 + jx� yj

One of the homework problems is to check this is a metric and to determine
if it gives a di¤erent topology for R from the standard one.

3. Space of functions: Let D be any set and let X be the set of all bounded
real-valued functions on D. De�ne

d(f; g) = sup
x2D

jf(x)� g(x)j

Then (X; d) is a metric space.

4. lp norm on Rn: There are other norms we can put on Rn and hence
other metrics. For 1 � p <1, de�ne

jjxjjp =

24 nX
j=1

jxj jp
351=p

(The case p = 2 is the usual Euclidean metric.) It is not hard to show
that we get the same collection of open sets, i.e, the same topology, for all
the value of p. As p!1 we get

5. sup norm on Rn: The function

d(x; y) = max
1�j�n

jxj � yj j

is another metric on Rn that de�nes the same toplogy.
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6. lp(N): If we look at in�nite sequences instead of just vectors, things are
more interesting. Let lp be the set of sequences (xn)1n=1 with

P1
n=1 jxnjp <

1. For such a sequence we de�ne

jj(xn)1n=1jjp =
" 1X
n=1

jxnjp
#1=p

Consider the two sets

F = f(xn)1n=1 2 lp : xn � 08ng
U = f(xn)1n=1 2 lp : xn > 08ng

Is F closed? Is U open?

7. l1(N): The space is now the set of bounded in�nite sequences. The norm
is

jj(xn)1n=1jj1 = sup
1�n<1

jxnj

1.4 Topological spaces

We de�ne a topological space by specifying which sets are open. In order for
this to be useful, we must put a few conditions on the collection of open sets.

De�nition 20 A topological space (X; T ) is a set X together with a collection
T of subsets of X which satisfy:

1. X 2 T and ? 2 T ,

2. Arbitrary unions of sets U 2 T are in T , i.e., for any indexing set I; if
Ui 2 T for all i 2 I then

[
i2I
Ui 2 T ,

3. If U; V 2 T then U \ V 2 T .

Instead of explicitly writing U 2 T , we usually say that U is open. Note
that property 3 immediately implies by induction that a �nite intersection of
open sets produces an open set.

De�nition 21 A set F is closed if FC = X n F 2 T , i.e. if FC is open.

Proposition 22 Arbitrary intersections and �nite unions of closed sets are
closed.

De�nition 23 The interior of a set A; denoted
�
A or int(A), is the union of

all open sets contained in A: The closure of a set A; denoted �A or cl(A), is the
intersection of all closed sets containing A.
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The interior is open since it is a union of open sets, and the closure is closed
since it is an intersection of closed sets.

Proposition 24 The interior of A is the largest open set contained in A. This
means that int(A) is open and if B is another open set contained in A, then
B � int(A). The closure of A is the smallest closed set containing A. This
means that �A is closed and if B is another closed set containing A, then �A � B.

De�nition 25 A point x 2 X is a limit point of a set A � X if every open set
U containing x also contains a point y 2 A n fxg :

We can characterize the closure in terms of limit points.

Proposition 26 �A is equal to the union of A and its limit points.

Proof. Let F be a closed set containing A: Then X n F is an open set disjoint
from A; so if x is a limit point of A it cannot be in X n F; thus all limit points
are contained in �A (which is the intersection of all closed sets containing A).
Conversely, if x 2 �A n A then if there were an open set U containing x but
disjoint from A; then �A\UC is closed set strictly contained in �A containing A;
a contradiction since �A is the smallest such set.

De�nition 27 A sequence xn 2 X converges to a point y 2 X if for all open
sets O 3 y, there exists an index N <1 such that for all n > N , xn 2 O.

The above de�nition is a direct generalization of the notion of convergence
in metric spaces. However, there is no generalization of the notion of a Cauchy
sequence to a topological space, since this requires the ability to compare the
�size�of neighbourhoods at distinct points, and a topological structure does not
allow for this comparison.

De�nition 28 x 2 A is an isolated point (of A) if there is an open set O
such that O \ A = fxg. x 2 X is an accumulation point of A if there exists a
sequence in A n fxg that converges to x.

Proposition 29 In a metric space limit points and accumulation points are the
same.

However, in topological spaces limit points and accumulation points need not
be the same. In general one should be cautious using sequences when working
in a topological space. There are many characterizations of topogical properties
in a metric space using sequences that do not carry over to topological spaces.
Of course all our previous examples of metric spaces are topological spaces.

We end this section with a few trivial examples of topological spaces.
Example (discrete topology): We de�ne all sets to be open. Does this
topology come from a metric?
Example (coarse or indiscrete topology): The only open sets are X and
?: Does this topology come from a metric?
Example (�nite complement topology): A set is de�ned to be open if its
complement is �nite or the set is the empty set.
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1.5 Continuous maps

We start with metric spaces.

De�nition 30 Let (X; d) and (Y; d0) be metric spaces and f : X ! Y a func-
tion. For x 2 X, we say f is continuous at x if 8� > 0, 9� > 0 such that
d(x; y) < � implies d(f(x); f(y)) < �. We say the map is globally continuous
(or just continuous) if it is continuous at every point in X.

We now give the de�nition for topological spaces.

De�nition 31 Let X and Y be topological spaces and f : X ! Y a function.
We say f is continuous if for any open set U in Y , f�1(U) is open.

Of course metric spaces are topological spaces, so when X and Y are metric
spaces we have two de�nitions of continuity.

Proposition 32 If (X; d) and (Y; d0) are metric spaces and f : X ! Y , then
the above two de�nitions of continuity for f are equivalent.

Note that for a continuous function the inverse image of a closed set is closed.
In a metric space we de�ned continuity at a point. We can do this in a

general topological space as well. We de�ne a neighborhood of a point x to be
a set N containing x such that there is an open set U with x 2 U � N . Note
that an open set is a neighborhood of each of its members. Also note that a
neighborhood does not have to be open. Now de�ne a function f : X ! Y
from one topological space to another to be continuous at x 2 X if for every
neighborhood V of f(x), f�1(V ) is a neighborhood of x. (Note that if V happens
to be open, we are not asserting that f�1(V ) is open.)
Continuous maps allow us to de�ne equivalence of topological spaces.

De�nition 33 We say that two topological spaces are homeomorphic if there
exists a continuous bijection between them with a continuous inverse. Such a
map is called a homeomorphism.

Example: One of the problems is to show that R and (0; 1) are homeomophic.
One of the problems in section three is to show that R and R2 are not homeo-
morphic.

De�nition 34 A function f : (X; T )! (Y;S) is sequentially continuous if for
every convergent sequence xn ! x in X, we have f(xn)! f(x).

Proposition 35 Every continuous function is sequentially continuous. In a
�rst countable space (for example, in a metric space), the converse is also true.
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1.6 Construction of topologies

Let X be a topological space and Y � X be a subset. We can give Y the
subspace topology by saying a set U � Y is open if U = V \ Y for some open
set V � X: It is easy to show that this gives a topology. Think about how this
gives a topology on the sphere Sn � Rn+1:
If T1 and T2 are topologies on X, we say T1 is �ner (or stronger) than T2 if

T2 � T1. It is coarser or weaker if the inclusion goes the other way.

Proposition 36 Let S be a collection of subsets of X. Then there is a unique
topology T which is the weakest topology containing S. This means that if T 0 is
another topology containing S, then T 0 is stronger than T .

Proof. Consider all the topologies that contain S. (There is at least one - the
discrete topology.) De�ne T to be their intersection. (Think carefully about
what this means. The elements of a topology are subsets of X.) In other words,
T is the collection of subsets U of X such that for every topology T 0 that
contains S we have U 2 T 0. It is now a matter of de�nition chasing to check
that this works.
We can think of the topology in the proposition as being formed by starting

with S and adding �just enough�sets to get a topology.
Let X and Y be topological spaces. We can give X�Y a topology by taking

the weakest topology that contains all sets of the form U �V where U � X and
V � Y are open sets. (Note that not all open sets can be written as U � V for
some U � X and V � Y:) This construction is the product topology. The above
immediately generalizes to a �nite cartesian product.
We now have two ways to put a topology on Rn. The metric topology we

have already seen and the product topology that you get by thinking of Rn as
the product of n copies of R. Check that they are the same.

Proposition 37 If Y is a set, (X; T ) is a topological space, and f : X ! Y is
a function, then we can de�ne a topology T 0 on Y by taking T 0 to be all subsets
U of Y such that f�1(U) 2 T . This is the strongest topology on Y that makes
f continuous.

With this construction f is a continuous function. It is important to note
that this construction works because of the set identities

f�1([�U�) = [�f�1(U�)
f�1(\�U�) = \�f�1(U�) (1)

Let X be a topological space and let � be an equivalence relation. Recall
that an equivalence relation � is a relation satisfying the following properties:

1. (re�exivity) x � x:

2. (symmetry) x � y implies y � x
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3. (transitivity) x � y and y � z implies x � z:

ThenQ = X= � denotes the set of equivalence classes of the relation. For x 2 X,
we denote the equivalence class containing x by [x]. There is a natural quotient
map q : X ! Q given by q (x) = [x]. We now use the previous proposition to
de�ne a topology on the quotient space Q: the open sets in Q are the sets U
such that p�1(U) is open in X. We call this the quotient topology
Example : The circle is a subset of the plane and so inherits a natural topology
from the usual topology on the plane. Equivalently, the usual distance function
on the circle is a metric which de�nes this topology. We can also think of
the circle as the interval [0; 2�] with the two endpoints identi�ed. To be more
precise, we de�ne an equivalence relation by de�ning 0 � 2�, and no other
distinct points are equivalent. Since [0; 2�] has a topology, we can consider the
quotient topology on [0; 2�]= �. Show that [0; 2�]= � is homeomorphic to the
circle with the usual topology.

Given a map f : X ! Y and a topology on X we have de�ned a topology on
Y by taking advantage of the set identities (1). If instead we have a topology
on Y , we might try to use it to de�ne a topology by X by taking the collection
of all sets of the form f�1(U) where U is open. We leave it to the reader to
check that this does not work in general - the resulting collection of sets need
not have the properties of a topology. We can de�ne a toplogy by taking the
weakest topology that includes all sets of the form f�1(U) where U is open in
Y . With this de�nition f is a continuous function. In fact, this topology on X
is weakest topology with this property.
We can generalize this construction. Suppose that the index � ranges over

some index set A and for each � we have a topological space (Y�;S�) and a
function f� : X ! Y�. Then we can de�ne the induced (or weak) topology on
X to be the weakest topology containing all sets of the form f�1� (U) where U
is open in Y�.

Proposition 38 The weak topology constructed above is the weakest topology
on X that makes all the functions f� continuous.

Remark: If Y � X and X is a topological space, then Y inherits a natural
topology (the subspace topology) from X. Another way to de�ne this topology
is that it is the weakest topology that make the inclusion map from Y to X
continuous.

1.7 More exotic examples

� Line with two origins. We consider two copies of the real line. We denote
elements of one of them by (x; 1) where x 2 R and the elements of the other
by (x; 2) where x 2 R. We de�ne an equivalence relation by (x; 1) � (x; 2)
if x 6= 0. (Of course, all points are de�ned to be equivalent to themselves.)
Note that (0; 1) and (0; 2) are not equivalent (hence the name). Their
equivalence classes just contain one element. All other equivalence classes
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contain two elements. The line with two origins is the quotient R [ R0= �
where x � x0 if x 6= 0:

� Order topology. A total ordering on a set X is a relation � such that for
any x; x0 2 X we have either that x � x0 or x0 � x and both are true if
and only if x = x0; and the relation is transitive. The order topology is
the weakest topology that contains the �intervals�

(a; b) = fx 2 X : a < x and x < bg

Products of ordered sets can be given the dictionary order. What do you
think the de�nition of the dictionary order is?

� Long line : This is a particular example of the previous example. Let
X = [0; 1)�R. The �dictionary order�is a total order de�ned as follows.
Given (x1; y1) and (x2; y2), to determine which is larger, we �rst look
at the �rst component. If x1 < x2 we de�ne (x1; y1) < (x2; y2), and if
x1 > x2 we de�ne (x1; y1) > (x2; y2). If x1 = x2 we look at the second
coordinate. In this case if y1 < y2 we de�ne (x1; y1) < (x2; y2), and if
y1 > y2 we de�ne (x1; y1) > (x2; y2). Then we use this total order to put
the order topology on X. We can think of X as an uncountable number
of copies of [0; 1) glued together end to end.

� Zariski topology. Consider the following topology on Rn: We take as the
closed sets the sets

F (S) = fx 2 Rn : f (x) = 0 8f 2 Sg

where S is a set of polynomials in n variables. Show that this is a topology
on Rn: Show that any two open sets must intersect, and hence the topology
cannot be Hausdor¤. (The de�nition of Hausdor¤ appears later.)

1.8 Local bases, basis, subbasis

Another way to specify a topology is with a local base (system of neighbor-
hoods).

De�nition 39 Let X be a set, and for every x 2 X, let there be given a collec-
tion N (x) of subsets of X satisfying

1. V 2 N (x) =) x 2 V .

2. If V1; V2 2 N (x), then 9V3 2 N (x) such that V3 � V1 \ V2.

3. If V 2 N (x), then there exists a W 2 N (x) such that W � V and the
following holds. If y 2W , then there exists U 2 N (y) such that U � V .

The collection fN (x)jx 2 Xg is a local base.
Given a local base, we can de�ne a topology T by O 2 T i¤ for all x 2 O,

there exists V 2 N (x) such that x 2 V � O.
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Note that the neighborhoods of x in N (x) do not have to be open! However,
given any local base, by �shrinking�the neighbourhoods a little if necessary, we
can obtain a local base which generates the same topology, all of whose elements
are open sets. In this case, condition 3 above simpli�es to
30. If V 2 N (x) and y 2 V , then there exists U 2 N (y) such that U � V .
We can also specify a topology with a basis or a subbasis.

De�nition 40 A basis B is a collection of subsets of X such that
(1) for all x 2 X; there exists U 2 B such that x 2 U
(2) if U;U 0 2 B and x 2 U \ U 0; then there is a set U 00 2 B such that x 2 U 00
and U 00 � U \ U 0:
A basis generates a topology by taking the open sets to be all sets we can form
by taking a union of a collection of sets in B. Equivalently we can de�ne a set
V to be open if every point x 2 V has a set U 2 B such that x 2 U � V:

An example of a basis is the open intervals for R. Note that the basis deter-
mines the topology. The sets in the basis have to be open, but the basis itself
need not be a topology since unions of elements of the basis are not necessarily
in the basis.
We can also specify a topology through a subbasis.

De�nition 41 A subbasis B0 (for a topology on X) is a collection of sets whose
union is X. We de�ne a topology by taking the open sets to be all sets which
are the union of �nite intersections of elements of B0:

Given a subbasis B0, de�ne B to be all �nite intersections of sets from B0.
Then B is a basis that generates the same topology as the subbasis.

Proposition 42 Let X and Y be topological space. Then a basis for the product
topology on X � Y is the collection of sets of the form U � V where U is an
open set in X and V is an open set in Y .

Proof. First we check that this collection of sets is a basis. Property 1 is
immediate. For property 2, if (x; y) 2 (U � V ) \ (U 0 � V 0), then (x; y) 2
(U \U 0)�(V \V 0) and (U \U 0)�(V \V 0) is in the basis. The product topology
is the weakest topology containing the sets in the basis, and so coincides with
the topology de�ned using the basis.

1.9 Separation and countability

Here we simply list some of the separation and countability properties.
Separation:

� Hausdor¤. A space is Hausdor¤ if for every two points x; y 2 X; there are
disjoint open sets U and V such that x 2 U; y 2 V . Note that a subspace
of a Hausdor¤ space is Hausdor¤ but the quotient of a Hausdor¤ space
may not be Hausdor¤ One of the problems is to show that the line with
two origins is an example of this.
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� Regular. A space is regular if one point sets are closed and for each pair
of a point x and a closed set B disjoint from x there are disjoint open sets
containing x and B:

� Normal. A space is normal if one point sets are closed and for each pair
of disjoint closed sets A;B there are disjoint open sets containing A and
B:

Hausdor¤ is the most important. One reason is the following.

Proposition 43 Finite point sets in Hausdor¤ spaces are closed.

Countability. A set is countable if there is a bijection between it and the
natural numbers. It is easy to see that the integers, the even integers, and
the rational numbers are all countable sets. It is also possible to see that the
real numbers between 0 and 1 form an uncountable set using Cantor�s diagonal
argument. Topological spaces have the following countability axioms:

� First countable. A space is �rst countable if every point has a count-
able basis, i.e. given x 2 X there is a countable collection of open sets
U1; U2; U3; : : : such that for any neighborhood V of x; there is k 2 N such
that Uk � V:

� Second countable. A space is second countable if it has a countable basis
for the topology. (Long line is an example which is not second countable.)

2 Compactness

2.1 Compactness in Rn and metric spaces
For a subset X of Rn, the following three properties are equivalent. So we can
take any one of them to be the de�nition of compact in Rn.

� X is closed and bounded. (A subset of Rn is bounded if there is an R > 0
such that jjxjj � R for x 2 X.)

� Every sequence contained in X has a limit point in X. That is, every
sequence has a subsequence which converges to a point in X:

� Given any collection of open sets whose union contains X (an open cover
of X), there is a �nite subcollection whose union still contains X (�nite
subcover).

In a general topological space they are not equivalent. In a metric space
the second and third are equivalent, but the �rst is not. We will �rst consider
compactness in metric spaces and give a characterization of compactness in a
metric space that is analogous to the �rst characterization of compact sets in
Rn.
We start by making the second and third properties above into de�nitions.
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De�nition 44 A set F in a topological space (X; T ) is compact if for any
collection of open sets whose union contains F (an open cover of F ), there is a
�nite subcollection whose union still contains F (�nite subcover).

De�nition 45 A set F in a topological space (X; T ) is sequentially compact
if every sequence contained in F has a limit point in F . That is, every sequence
has a subsequence which converges to a point in F:

Proposition 46 In a metric space a set is compact if and only if it is sequen-
tially compact.

In a general topological space you can have sequentially compact sets which
are not compact and compact sets which are not sequentially compact.

Remark: It is easily checked that a set F � X is compact according to the
above de�nition if and only if the space F with the relative topology is a compact
topological space.

De�nition 47 A subset X of Rn is said to be bounded if there exists r > 0
such that X � B (0; r) = fx 2 Rn : jxj < rg.

The Heine-Borel theorem says

Theorem 48 (Heine-Borel Theorem) Subsets of Rn are compact if and only
if they are closed and bounded.

Proof. If a subset of Rn is compact, it must be closed since Rn is Hausdor¤.
The subset must be bounded because we can take the cover of (�k; k)n for
k = 1; 2; : : : and it must have a �nite subcover.
To prove the other direction, we start by showing that [a; b] is compact in

R. For convenience we take [a; b] = [0; 1]. Let U be a cover of [0; 1] : We let

S = fx 2 [0; 1] : [0; x] has a �nite subcover in Ug :

Now we show that y = supS must be 1: Observe since U is a cover, y is contained
in some open set U 2 U , and hence the interval (y � "; y + ") � U for some small
" > 0: This implies both that y 2 S since there must be some y0 2 S; y0 > y� "
since y is the sup, so take the �nite cover of [0; y0] and add in U: But this also
implies that y + "=2 2 S if y + "=2 2 [0; 1] ; so y = 1:
Since the topology on Rn is the same as the product topology it gets by

thinking of it as the product of n copies of R, [a; b]n is compact in Rn. A closed
and bounded set is a closed subset of some compact set [�k; k]n ; and thus is
compact.
In Rn, compactness is equivalent to being closed and bounded, but this is

not true in a general metric space. One of our examples is a metric space in
which there are bounded closed sets that are not compact. (Which example?)
There is a characterization of compactness in metric spaces. We have to replace
boundedness by a stronger property and we also have to replace closed.
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To see why we have to replace closed, consider the following example. Let
Q be the rationals. Let I = [0; 1] \ Q. Then I is a closed set in Q. It is not
sequentially compact and so is not compact. The problem in this example is
that the space has �missing points.�

De�nition 49 A sequence xn in a metric space is Cauchy if for any � > 0 there
exist an integer N such that for n;m � N we have d(xn; xm) < �. A metric
space X is complete if every Cauchy sequence converges, i.e., for every Cauchy
sequence xn there is x 2 X such that xn converges to x.

De�nition 50 In a metric space a set is totally bounded if for any � > 0, it
can be covered by a �nite number of balls of radius �.

Theorem 51 A metric space is compact if and only if it is complete and totally
bounded.

2.2 Properties of compact spaces

In this section we see some properties of a compact set.

Proposition 52 If F is compact and A � F is closed, then A is compact.
Proof. Let U� be an open cover of A. Since A is closed, Ac is open. Since
[�U� contains A, Ac [ ([�U�) contains F . (In fact it equals the entire space.)
So this open cover of F admits a �nite subcover. The �nite subcover may or
may not contain Ac, but if it doesn�t we can add it to the �nite subcover. So

A � Ac [ ([ni=1U�i) (2)

Since Ac does not cover any of A, this implies

A � [ni=1U�i (3)

so we have a �nite subcover of A.

Proposition 53 If f : X ! Y is continuous and X is compact, then f (X) is
compact.
Proof. If fUigi2I is an open cover of f (X) ; then

�
f�1 (Ui)

	
i2I is an open

cover of X. So it must have a �nite subcover
�
f�1

�
Uij
�	k
j=1

: But then
�
Uij
	k
j=1

must cover f (X).

Proposition 54 If f : X ! R is continuous and X is compact, then there exist
xm and xM in X such that

f (xm) = inf
x2X

f (x)

f (xM ) = sup
x2X

f (x) :

In words, f attains its minimum and maximum.
Proof. Since f (X) is compact, it must be a closed and bounded subset of R
and thus it contains its lower and upper bounds.
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Proposition 55 If X and Y are compact topological spaces, then X � Y with
the product topology is compact.

Proof. Let U be an open cover of X �Y . De�ne a subset A of X to be �good�
if there is a �nite subcover (from U ) for A�Y . Our goal is to show X is good.
Consider an arbitary x 2 X. We claim there is an open neighborhood Vx of

x that is good. 8y 2 Y , (x; y) is a point in X �Y and so there is a Uy 2 U with
(x; y) 2 Uy. Recall that a basis for the product is given by the products of an
open set in X with an open set in Y . So there are open sets Vy in X and Wy

in Y such that (x; y) 2 Vy �Wy � Uy. Now fWygy2Y is a cover of Y and so
has a �nite subcover fWyi : i = 1; � � � ; ng. De�ne Vx = Vy1 \ � � � \ Vyn . Then
Vx is an open neighborhood of x. Vx � Y is covered by [ni=1(Vyi �Wyi) which
is itself covered by [ni=1Uyi , i.e., �nite subcover of U . So Vx is good.
Now 8x 2 X, let Vx be a good open neighborhood of x. Then Vx is a cover

of X and so has a �nite subcover, i.e.,

X � [ni=1Vxi
Each Vxi�Y has a �nite subcover from U , and the union of these �nite subcovers
will be a �nite subcover of X � Y .
Proposition 56 Compact subsets of a Hausdor¤ space are closed.

2.3 Examples and non-examples of compact spaces

� Any �nite topological space is compact.

� The �nite-dimensional sphere
n
x 2 Rn : jxj2 = 1

o
is compact.

� The Cantor set is compact.

� For any space with the �nite-complement topology, every subset is com-
pact. The is a re�ection of the fact that there are not very many open
sets in this topology. (The stronger the topology, the harder it is for a set
to be compact.)

� Let l2 be the set of sequences (xn)1n=1 with
P1

n=1 x
2
n <1 and

jj(xn)1n=1jj =
" 1X
n=1

x2n

#1=2
(4)

The unit ball is this space is a closed and bounded set, but it is not
compact. In fact, it is not sequentially compact. For example, let en be
the sequence which is 1 in the nth place and 0 elsewhere. Then d(en; em) =p
2 for n 6= m, so en cannot have a convergent subsequence. One of

the exercises is to prove that in this space every compact set has empty
interior. Another exercise is to prove that the following set is compact:

f(xn)1n=1 :
1X
n=1

nx2n � 1g (5)
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� Let L2(R) be the space of functions f on R2 with
R
f2(x)dx < 1. We

de�ne

jjf jj2 =
�Z

f2(x) dx

�1=2
(6)

(There are some major issues here which we ignore. ) The closed unit ball
is not compact in this space. (Can you prove this?) For g 2 L2, de�ne

Tg(f) =

Z
f(x)g(x) dx (7)

Look at the weakest topology that makes all these functions Tg (where g
ranges over L2) continuous. A big theorem from functional analysis says
the closed unit ball is compact in this topology.

3 Connectedness

3.1 Connected and disconnected sets in Rn

The key property of a connected set is the intermediate value theorem, which
states that if f : [a; b]! R is a continuous function and f (a) � r � f (b) then
there exists c 2 [a; b] such that f (c) = r: Notice this is not true for functions on
disconnected sets such as (0; 1) [ (1; 2) :

3.2 De�nition of connected

De�nition 57 A separation of a space X is a pair U; V of disjoint open subsets
of X such that X = U [ V: Note that the two sets U and V are both open and
closed since U = X n V and V = X n U: The trivial separation consists of X
and ?:

De�nition 58 A space X is connected if there exist no nontrivial separations
of X: Equivalently, X is connected if the only open and closed subsets of X are
X and ? (since if A � X is open and closed, then X = A[AC is a separation if
neither is empty). A space which is not connected is said to be disconnected. A
subset of a topological space is connected if it is connected as a toplogical space
itself when we endow it with the subspace topology.

Example 59 (0; 1) is connected.

Example 60 (0; 2)nf1g is disconnected since (0; 1) and (1; 2) form a nontrivial
separation.

Using the de�nition of the subspace topology, a subset A of X is not con-
nected if we can �nd open sets U and V in X such that A � U [ V , A \ U 6= ;
A \ V 6= ; and U \ V \A = ;. One might ask if it is always possible to choose
these sets so that U \ V = ;. It is not.
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Example 61 Let X = fa; b; cg. Let

T = f;; fbg; fa; bg; fb; cg; Xg (8)

and let S = fa; cg. The subpace topology on S is

T 0 = f;; fag; fcg; fa; cgg (9)

i.e., the discrete topology. So S = fag [ fcg is a separation that shows S is not
connected. But there are no disjoint open sets U; V in X with U \ S = fag and
V \ S = fcg.

A note on the proof of Heine-Borel: we essentially used that [0; 1] is con-
nected and showed that the set of points y 2 [0; 1] such that [0; y] can be covered
by a �nite subcover is both open and closed, and hence must be everything.

3.3 Properties of connected sets

Proposition 62 The union of a collection of connected sets whose intersection
is not empty is a connected set.

Proof. Let Y be the topological space. Let Xi � Y be connected. Let X =
[iXi. We give X the subspace topogy. Note that there are two ways to put a
topology on Xi, the subspace toplogy we get by thinking of it as a subset of Y
and the subspace toplogy we get by thinking of it as a subset of X. We leave it
to the reader to check they are the same. So the original assumption that Xi is
connected as a subset of Y means it is connected as a subset of X.
Let x 2 \iXi. Now suppose X = U [ V where U and V are disjoint open

subsets of X. x must belong to one of U and V . Assume it belongs to U . Now
Xi \ U and Xi \ V are open sets in Xi in the subspace topology and Xi \ U is
not empty since it contains x. So Xi \ V must be empty, i.e., Xi � U . This is
true for all i, so X = U , and so V is empty.

Proposition 63 Let A be a connected subset of X: If A � B � �A then B is
connected.

Proof. Suppose B = U [ V; where U and V are disjoint and open in the
subspace topology for B. We leave it to the reader to check that U \ A and
V \A are open in A with the subspace topology. They are clearly disjoint and
cover A. Since A is connected, one of them must be empty. Assume that V \A
is empty. So A is entirely contained in U .
Since U; V are open in B, there are open sets U 0; V 0 in X with U = B \ U 0

and V = B\V 0 Since A � U , A � (V 0)c. Since (V 0)c is closed in X, �A � (V 0)c.
This implies B � (V 0)c. If x 2 V , then x 2 B, and so x =2 V 0. But V � V 0, a
contradiction. So V is empty. This shows B is connected.

Proposition 64 The product of connected sets is connected.
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Proof. We see that fxg � Y and X � fyg are connected. Since both contain
(x; y) ; Vx;y = (fxg � Y ) [ (X � fyg) is connected. Now pick some y0 2 Y . We
see that [

x2X
Vx;y0 = X � Y

and \
x2X

Vx;y0 = X � fy0g 6= ?:

Thus X � Y is connected.

Proposition 65 If f : X ! Y is continuous and X is connected then f (X) is
connected.

Proof. Exercise

Proposition 66 (Intermediate value theorem) If X is connected, f : X ! R
is continuous, and f (a) � r � f (b) then there exists c 2 X such that f (c) = r:

Proof. We know that f (X) is a connected subset of R. Now if there is no
c such that f (c) = r; then we can cover f (X) by the sets (�1; r) \ f (X)
and (r;1) \ f (X) ; which are disjoint open sets. They are nonempty since one
contains f (a) and the other f (b) : This is a separation, contradicting that f (X)
is connected.

3.4 Path connected

De�nition 67 A path in X is a continuous map  : [a; b]! X:

De�nition 68 A space X is path connected if any two points can be joined by
a path.

One of the problems gives an example of a set that is connected but not path
connected. So these two notions are not equivalent. However, one is stronger
than the other.

Proposition 69 If X is path connected, then it is connected.

Proof. We shall show that if X is not connected, then it is not path connected.
If X is not connected, then there is a separation fU; V g : Given x; y 2 X if there
were a path  : [a; b] ! X between them, then  ([a; b]) would be connected,
which implies the path must lie entirely in U or V (otherwise U and V would
form a separation for  ([a; b])), which says that there are no paths between
points in U and points in V: Hence X is not path connected.
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3.5 Components

De�nition 70 Given X, we can de�ne an equivalence relation on X by setting
x � y if there is a connected subset containing both x and y: The equivalence
classes are called components or connected components of X:

Show that this is an equivalence relation.

Proposition 71 The components of X are connected disjoint subsets of X
whose union is X; such that each connected subset of X intersects only one
component.

Proof. Let fCigi2I be the components. Since the components are equivalence
classes, they must be disjoint and must cover. If U is connected and xi 2 U \Ci
and xj 2 U \ Cj then xi � xj ; which implies that Ci = Cj by the de�nition of
components. Now we must show that components are connected. Fix x0 2 Ci:
For any x 2 Ci; there is a connected set Ax containing both x0 and x since
x � x0: Thus Ci =

[
x�x0

Ax; which implies that Ci is connected since it is the

union of connected sets with a common intersection point x0:
We can also look at path components.

De�nition 72 De�ne an equivalence relation on X by x � y if there is a path
from x to y: The equivalence classes are called path components of X:
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