
Topology problems

August 2, 2017

1 Problems on topology

1.1 Basic Problems

1-1. Applications of theorems

(a) Use the Intermediate Value Theorem to show that there is a number c 2 [0;1) such that
c2 = 2: We call this number c =

p
2:

Answer: Since the function f (x) = x2 is continuous and f (1) = 1 and f (2) = 4; there must
be a number c between 1 and 2.

(b) Use the Extreme Value Theorem to show Rolle�s theorem: If f : [a; b] ! R is di¤erentiable
and f (a) = f (b) then there is a c 2 [a; b] such that f 0 (c) = 0:

(c) Use the Jordan Curve Theorem to show there is no continuous injective map of the complete
graph K5 into the plane.

1-2. In this problem we use our analysis de�nitions of topology on R and con�rm the topological versions.
An open set is in R a set U such that for any x 2 U there is an " > 0 such that (x� "; x+ ") � U:
A closed set is a set which contains all of its limit points, i.e. if xi 2 F for all i; then limi!1 xi 2 F:

(a) Show that every open subset of R is the complement of a closed set and every closed subset is
the complement of an open set.
Answer: Suppose U is open and xi is a sequence in R n U with limxi = x1: If x1 2 U then
(x1 � "; x1 + ") � U; but that means that xi 2 U for i large enough, which is not true. This
means that x1 must be in RnU and it is closed. Suppose RnF is not open. Then there exists
a point x 2 R n F and a sequence xi 2 F converging to x =2 F (since

�
x� 1

n ; x+
1
n

�
 R n F ),

which means that F is not closed.

(b) We say a function f : D! R, where D � R, is continuous if for any sequence fxig � D with
limi!1 xi 2 D;

lim
i!1

f (xi) = f
�
lim
i!1

xi

�
:

Show that if F � R is closed, then f�1 (F ) is closed.
(c) Show that if U � R is open, then f�1 (U) is open.
(d) Show that every open set is the union of intervals.

(e) If U � R is open, show that a function f : U ! R is continuous (meaning the preimage of an
open set is open) if and only if for every x 2 U and for every " > 0 there exists a � > 0 such
that jf (x)� f (y)j < " if jx� yj < �:

1-3. **(closed sets) A set F is closed if FC = X n F 2 T , i.e. if FC is open.
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(a) Show that arbitrary intersections and �nite unions of closed sets are closed.

(b) Show that a map f : X ! Y is continuous if and only if f�1 (V ) is closed for any closed set
V � Y:

(c) A point x 2 X is a limit point of a set A � X if every open set U containing x also contains a
point y 2 A n fxg : The closure of A; denoted cl (A) or �A; is the intersection of all closed sets
containing A: Show that �A is closed.

(d) Show that �A is equal to the union of A and its limit points.

(e) Show that if A is closed, then �A = A and A contains its limit points.

(f) (accumulation points) A point x 2 X is an accumulation point of A if there exists a sequence
in A n fxg that converges to x. A point x 2 A is an isolated point (of A) if there is an open set
O such that O \ A = fxg. Let A � R, and A0 denotes the set of all the accumulation points
of A. If y 2 A0 and U � R is an open set containing y, show that there are in�nitely many
distinct points in A \ U .

(g) Let A � R, and A0 denotes the set of all the accumulation points of A. If y 2 A0 and U � R
is an open set containing y, show that there are in�nitely many distinct points in A \ U .

(h) Let A � R, show that
A0 =

\
x2A

Anfxg:

(i) Give an example of a limit point that is not an accumulation point in a topological space.

1-4. (interior) The interior of A; denoted int(A) or
�
A is the union of all open sets contained in A:

(a) Show int(A) is open.

(b) Show that if B is an open set contained in A, then B � int(A).

1.2 Examples of topologies

1-5. **(metric topology) A metric space (X; d) is a set X and a function (called the metric) d : X�X !
R such that for all x; y; z 2 X; the metric satis�es:

� (positive de�nite) d (x; y) � 0 with d (x; y) = 0 if and only if x = y
� (symmetric) d (x; y) = d (y; x)
� (triangle inequality) d (x; z) � d (x; y) + d (y; z)

The ball of radius r > 0 centered at x 2 X is de�ned to be B (x; r) = fy 2 X : d (x; y) < rg : We
can generalize the de�nition of open set on R to open set on a metric space by saying a set U � X
is open if for every x 2 U there exists an r > 0 such that B (x; r) � U:

(a) Show that d (x; y) = jx� yj makes R into a metric space.
(b) Show that the open sets described above form a de�nes a topology. This is called the metric

topology.

(c) Show that a function f : X ! Y between metric spaces (X; dX) and (Y; dY ) is continuous if and
only if for every x 2 X and for every " > 0 there exists a � > 0 such that dY (f (x) ; f (y)) < "
if dX (x; y) < �:
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(d) Show that in a metric space limit points and accumulation points are the same.

1-6. (Norms on vector spaces) Let V be a vector space. A function k�k : V ! R on V is a norm if

� For all x 2 V , kxk � 0, and kxk = 0 if and only if x = 0.
� kaxk = jaj kxk for every a 2 R and x 2 V .
� kx+ yk � kxk+ kyk for every x; y 2 V .

(a) Show that d (x; y) = kx� yk de�nes a metric.
(b) Let C((0; 1)) be the set of bounded continuous functions on (0; 1) and show that kfk =

supx2(0;1) jf (x)j is a norm. Let U = ff : f(x) > 0 8x 2 (0; 1)g, and V = ff : f(x) �
0 8x 2 (0; 1)g. For each of U and V determine if the set is open or closed or neither. You
should prove your answer.

(c) Let lp be the set of sequences (xn)1n=1 with
P1

n=1 jxnjp <1. For such a sequence we de�ne

jj(xn)1n=1jjp =
" 1X
n=1

jxnjp
#1=p

:

Show this is a norm. Consider the two sets

F = f(xn)1n=1 2 lp : xn � 08ng
U = f(xn)1n=1 2 lp : xn > 08ng

Is F closed? Is U open?

1-7. For x; y 2 R let
d(x; y) =

jx� yj
1 + jx� yj

(a) Show this is a metric.

(b) Does this metric give R a di¤erent topology from the one that comes from the usual metric on
R? You should prove your answer.

(c) Generalize this to show that for any metric space (X; d) ; there is a bounded metric that
generates the same topology.

1-8. (local base) Let X be a set. A local base (or basis), or neighborhood base, is a collection fN (x)jx 2
Xg of subsets of X satisfying

� V 2 N (x) =) x 2 V .
� If V1; V2 2 N (x), then 9V3 2 N (x) such that V3 � V1 \ V2.
� If V 2 N (x), then there exists a W 2 N (x) such that W � V and the following holds: If
y 2W , then there exists U 2 N (y) such that U �W .

(a) Given a local base fN (x)g, de�ne a set T by U 2 T if and only if for any x 2 U; there exists
V 2 N (x) such that V � U: Show that T is a topology. We call fN (x)g a local base of the
topology.

(b) Suppose fN (x)g is a local base for a topological space (X; T ). If A 2 N (x), show that there
exists a U 2 T such that x 2 U � A. Hence neighborhoods need not be open, but must
contain an open set.
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(c) Show that open balls Br (x) = fy : d (x; y) < rg form a local base of a metric space (X; d).

(d) Show that closed disks Dr (x) = fy : d (x; y) � rg (where r > 0) form a local base of a metric
space (X; d).

(e) N1(x) and N2(x) are local bases for a space X. Show that the topology T1 generated by N1(x)
is �ner that the topology T2 generated by N2(x) if and only if for all B 2 N2(x), there is a set
A 2 N1(x) such that x 2 A � B.

1-9. (�ner/coarser) In this problem and the next, we explicitly write the topology as a collection of open
sets T . Suppose (X; T1) and (X; T2) are topological spaces and T2 � T1. We say the topology T1 is
�ner than T2 and the topology T2 is coarser than T1:

(a) Show that T1 is �ner than T2 if and only if for every x 2 X and every U 2 T2 with x 2 U ,
there is a V 2 T1 with x 2 V such that V � U .

(b) Show that T1 is �ner than T2 if and only if the identity map Id : (X; T1)! (X; T2) is continuous.

1-10. **(basis for a topology) A basis B is a collection of subsets of X such that

� For all x 2 X; there exists U 2 B such that x 2 U .
� If U;U 0 2 B and x 2 U \ U 0; then there is a set U 00 2 B such that x 2 U 00 and U 00 � U \ U 0:

(a) Show that a basis generates a topology by taking the open sets to be all sets we can form by
taking a union of a collection of sets in B.

(b) Show this is equivalent to de�ning a set V to be open if every point x 2 V has a set U 2 B
such that x 2 U � V:

(c) Show that the collection of all balls forms a basis for the metric topology. Show that not every
open set is in the basis.

1-11. **(Product topology) Let X� be a collection of topological spaces indexed by a set I. We de�ne
a topology on the Cartesian product

Q
�2I X� as follows: a basis is given by sets of the formQ

�2I U�, where U� � X� is open and for all but �nitely many � , U� = X .

(a) Prove that the above construction does indeed yield a basis.

(b) Prove that this is the coarsest topology (with fewest open sets) such that the projections
�� :

Q
�2I X� ! X� are continuous.

1-12. **(Subspace topology) Suppose (X; T ) is a topological space.

(a) If W � X is a subset, show that the relative or subspace topology of W de�ned by O �W is
open only if O =W

T
U for some U 2 T is indeed a topology.

(b) Let S2 � S1 � X. Equip S1 with the subspace topology. There are two ways to de�ne a
topology on S2. We can give it the subspace topology it gets by thinking of it as a subset of
X or we can give it the subspace topology it gets by thinking of it as a subset of S1. Show
that there two topologies on S2 are the same.

1-13. (Initial topology) Given a map f : X ! Y and a topology on Y , let T be the collection of subsets
of X of the form f�1(U) where U is open.

(a) Show that this de�nes a topology on X: This is called the initial topology or the weak topology.
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(b) Suppose that the index � ranges over some index set A and for each � we have a topological
space (Y�;S�) and a function f� : X ! Y�. In this case, we cannot simply take the sets of
the form f�1� (U) where U is open. Instead, we need to take the coarsest topology (fewest
open sets) containing this set. We call this initial topology (or weak topology) as well. Show
that the initial topology constructed above is the weakest topology on X that makes all the
functions f� continuous.

(c) Show that the subspace topology is the initial topology for the inclusion map.

(d) Show that the product topology is the initial topology for the projection maps ��:

1-14. **(quotient topology) Let X be a topological space and let � be an equivalence relation. Recall
that an equivalence relation � is a relation satisfying the following properties:

� (re�exivity) x � x:
� (symmetry) x � y implies y � x
� (transitivity) x � y and y � z implies x � z:

Then Q = X= � denotes the set of equivalence classes of the relation. For x 2 X, we denote
the equivalence class containing x by [x]. There is a natural quotient map q : X ! Q given by
q (x) = [x]. We now de�ne the quotient topology on Q such that U � Q is open if q�1(U) is open
in X. We call this the quotient topology.

(a) Show that the quotient topology is, in fact, a topology.

(b) Show that q is continuous if Q has the quotient topology.

(c) Show that the quotient topology is the �nest topology (most open sets) such that q is contin-
uous.

(d) The circle is a subset of R2 and so can be given the subspace topology. We can also think of the
circle as the interval [0; 2�] with the two endpoints identi�ed. To be more precise, we de�ne
an equivalence relation by de�ning 0 � 2�, and no other distinct points are equivalent. Since
[0; 2�] has a topology, we can consider the quotient topology on [0; 2�]= �. Show that [0; 2�]= �
is homeomorphic to the circle

�
(x; y) 2 R2 : x2 + y2 = 1

	
with the subspace topology.

1-15. (�nal topology) If Y is a set, (X; T ) is a topological space, and f : X ! Y is a function, then we
can de�ne a T 0 on Y by taking T 0 to be all subsets U of Y such that f�1(U) 2 T .

(a) Show this de�nes a topology. This is sometimes called the �nal topology or strong topology.
With this construction f is a continuous function. It is important to note that this construction
works because of the set identities

f�1([�U�) = [�f�1(U�)
f�1(\�U�) = \�f�1(U�) (1)

(b) Show that the �nal topology makes f a continuous function and that it is the �nest topology
(most open sets) that makes f a continuous function.

(c) Show that the quotient topology is the �nal topology for the quotient map q (x) = [x] :

1-16. (pro�nite topology) An arithmetic progress in Z is a set of the form fk + nl : n 2 Zg where l is a
positive integer and k is any integer. De�ne the pro�nite topology on Z in which the open sets are
the empty set and unions of arithmetic progressions.
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(a) Show that an arithmetic progression is also a closed set in this topology.

(b) Show that if there were only �nitely many primes, then the set f�1; 1g would be open.
(c) Then show that this set is not open and conclude that there are in�nitely many primes.

(d) Let T1 be the product of countably in�nitely many copies of the unit circle with the product
topology. De�ne the map � : Z! T1 as follows:

�(n) = (exp(2�in=2); exp(2�in=3); exp(2�in=4); exp(2�in=5); :::) :

Show that this map is injective and the induced topology on Z coincides with the pro�nite
topology.

1.3 Properties of topologies

1-17. (�rst countable) (X; T ) is �rst countable if it has a local base N (x) such that at every point x 2 X,
the collection of neighborhoods N (x) is countable.

(a) Show that the metric topology on a metric space (X; d) is �rst countable.

(b) Is (X; T ) is �rst countable, show that every point x 2 X has a countable collection of open
neighborhoods Un 3 x such that Un+1 � Un, and x is an interior point for an open set O if
and only if there is an index n such that x 2 Un � O.

(c) With the same de�nitions as the previous part, show that if you construct a sequence by
picking arbitrary points yn 2 Un, it follows that the sequence fyng converges.

(d) If (X; T ) is �rst countable, and (Y;S) is any topological space, show that f : X ! Y is
continuous if and only if it is sequentially continuous.

1-18. (second countable) A topological space is second countable if it has a countable basis.

(a) Show that R with the usual topology is second countable.
(b) Give an example of a space which is �rst countable but not second countable.

(c) Show that every second countable space is also �rst countable.

1-19. (dense/separable) A subspace A of X is called dense if the closure of A is X. A topological space
X is called separable, if there exists a countable dense subset.

(a) Show that Rn is separable.
(b) Show that if X is second countable, then X is separable.

1-20. *(Hausdor¤/T2) A space is Hausdor¤ (or T2 ) if for every two points x; y 2 X; there are disjoint
open sets U and V such that x 2 U; y 2 V .

(a) Show that a subspace of a Hausdor¤ space is Hausdor¤ but the quotient of a Hausdor¤ space
may not be Hausdor¤.

(b) Show that �nite point sets in Hausdor¤ spaces are closed.

(c) (line with two origins) The line with two origins is de�ned to be the quotient of R�f1g[R�f2g
by the equivalence relation (a; 1) � (a; 2) if a 6= 0: Show that the line with two origins is not
Hausdor¤.
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(d) (Zariski topology) Consider the topology on Rn in which the open sets are the empty set and
the complements of the common zero levels sets of �nitely many polynomials. Show that this
is indeed a topology on Rn. This is called the Zariski topology. Show also that the Zariski
topology is not Hausdor¤.

1-21. (T1) A topological space X is called a T1-space (or a Tychono¤ space) if for any two di¤erent
points x; y 2 X there exists an open set U which contains x but does not contain y.

(a) Prove that a space X is a T1-space if and only if any subset consisting of a single point is
closed.

(b) Let the group R act on R2 by
t:(x; y) = (x; y + tx):

Prove that the quotient space with the quotient topology is not Hausdor¤, but is the union of
two disjoint Hausdor¤ subspaces. Also show that the quotient space is a T1-space.

1-22. Find a topological space X and a sequence xn in X which converges but has more than one limit.
What additional property on X implies that limits of sequences are unique?

1-23. A function f : R! R is lower semi continuous if for all x 2 R; � > 0, there exists a � > 0 such that
jy � xj < � implies that f(y) > f(x)� �.

(a) Show that the collection B = f(�;1) j� 2 Rg is a basis. Let T 0 denote the topology generated
by B. Show that T 0 � Tmetric and the containment is strict. (Hint: One idea is to show that
T 0 is not Hausdor¤.)

(b) Show that the collection B along with the empty set and all of R is the topology generated by
the base B, i.e. T 0 = B [ f;;Rg.

(c) Show that T 0 is second countable.

(d) Show that a function f : (R; Tmetric) ! (R; T 0) is continuous, if and only if it is lower semi-
continuous by the earlier de�nition.

(e) Show that a function f : (R; T 0) ! (R; Tmetric) is continuous, if and only if it is a constant
function.

1-24. Let X = N [ feg. De�ne a collection T by A � X is in T if and only if A does not contain e (this
includes the empty set) or both e 2 A and Ac is �nite (this includes X).

(a) Show that T is a topology on X.

(b) Show that T is second countable.

(c) Show that N is dense in (X; T ).
(d) Is (X; T ) compact? (see later section)
(e) A function f : N ! R is the same thing as a sequence xn. We will say that g : X ! R is

a continuous extension of f if g(n) = f(n)8n 2 N. Show that f has a continuous extension
i¤ xn = f(n) is a convergent sequence. Further, the continuous extension is given by g(e) =
limn!1 f(n).

(f) Every element a = (l; a1; a2; a3; : : :) 2 R � RN de�nes a function fa : X ! R by fa(n) =
an; fa(e) = l. Let Y � R � RN denote the set of all the convergent sequences with their
associated limits, i.e. (l; a1; a2; a3; : : :) 2 Y =) an ! l. Find the weakest topology on X
such that for all a 2 Y , fa : X ! R is continuous.

(g) Can you �nd a metric on X such that the metric topology is identical to the topology T above?
Any topology with this property is said to be metrizable.
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2 Problems on compactness

2-1. Prove or disprove:

(a) Show that (0; 1] is not compact.

(b) A is �nite and U is a open subset of R. If A � U , there exists an � > 0 such that for all x 2 A,
B(x; �) � U . (B(x; �) denotes the open ball of radius � centered at x.)

(c) P is countable and U is a open subset of R. If P � U , there exists an � > 0 such that for all
x 2 P , B(x; �) � U .

(d) F is closed and U is a open subset of R. If F � U , there exists an � > 0 such that for all
x 2 F , B(x; �) � U .

(e) K is compact and U is a open subset of R. If K � U , there exists an � > 0 such that for all
x 2 K, B(x; �) � U .

2-2. Exampes

(a) Any �nite topological space is compact.

(b) The �nite-dimensional sphere
n
x 2 Rn : jxj2 = 1

o
is compact.

(c) The Cantor set K de�ned by K = [0; 1] n
1[
m=1

3m�1�1[
k=0

�
3k+1
3m ; 3k+23m

�
is compact.

(d) A set X is has the discrete topology if for each x 2 X; the set fxg is open. Show that there is
only one such topology and that it is compact if and only if X is �nite

(e) Let RPn denote the quotient space of Rn+1 n f0g, by the equivalence relation x � y i¤ 9� 6= 0,
s.t. x = �y. Show that RPn is compact.

(f) Given a set X; the �nite complement topology is the topology where open sets are sets whose
complement are �nite. Show this is a topology and that X is compact with this topology.

2-3. Prove or disprove the following:

2-4. Suppose (X; T ) is a topological space.

(a) **We can de�ne compactness of a subset as follows: F � X is compact if every collection
fUigi2I of open sets in X such that F �

[
i2I
Ui; there is a �nite subcover. Show that the

topological space F with the subspace topology is compact if and only if F is compact as a
subset of X:

(b) Let S2 � S1 � X. We give S1 the subspace topology.
i. Show that if S2 is open in S1 then it need not be open in X. Show that it is if S1 is open
in X.

ii. Show that if S2 is compact in S1, then S2 is compact in X:n
(c) *Show that ifX is compact and F � X is closed, then F is compact (in the subspace topology).

2-5. Proof of Extreme Value Theorem

(a) Prove [0; 1] is compact.

(b) Prove that if X and Y are compact, then X � Y is compact.
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(c) Prove the Heine Borel Theroem (for compact subsets of Rn).
(d) If f : X ! Y is continuous and X is compact, then f (X) is compact (with the subspace

topology).

(e) Prove the Extreme Value Theorem.

2-6. We look at how compactness and closedness are related.

(a) Show that compact subsets need not be closed. Hint: consider the indiscrete topology that
has only two open sets.

(b) Show that compact subsets of a Hausdor¤ space are closed.

2-7. (sequential compactness) A sequence fxng in a topological space X converges to x1 2 X if for
every open set U containing x1; there exists N such that xn 2 U if n > N: We say a space is
sequentially compact if every sequence has a convergent subsequence. Prove that in a metric space,
a set is compact if and only if it is sequentially compact

2-8. Show that if X is compact and Y is Hausdor¤ and f : X ! Y is a continuous bijection, then f is
a homeomorphism.

2-9. (local compactness/one point compacti�cation) A space is locally compact if every point has a
compact neighborhood. (A neighborhood of a point x is an set N such that there exists and open
set U such that x 2 U � N:)

(a) If X is a compact space, then show that X is locally compact.

(b) Show that the rational numbers Q is not locally compact. (Hint: Given a neighborhood of
q 2 Q, it must contain a closed interval [q � r; q + r] \ Q which is compact if N is compact.
Then show that [q � r; q + r] \Q has a cover with no �nite subcover.)

(c) There is a canonical way to add one point to a locally compact Hausdor¤ space to get a
compact space. Namely, if X is locally compact Hausdor¤, let �X = X [ f1g. The open sets
of �X are the open sets of X together with the sets (X n K) [ f1g, where K is a compact
subset of X. Prove that �X , called the one point compacti�cation of X, is a compact Hausdor¤
space.

(d) Show that the one point compacti�cation of Rn is homeomorphic to the sphere Sn:

2-10. A sequence fxng in a metric space (X; d) is said to be Cauchy if for every " > 0 there exists N > 0
such that d (xn; xm) < " whenever n;m � N: A metric space is complete if every Cauchy sequence
converges.

(a) Show that every convergent sequence is Cauchy. (The converse is only true if the metric space
is complete.)

(b) Give an example of a metric space that is not complete.

(c) Show that a compact metric space can be covered by �nitely many balls of any given radius.

(d) Show that every compact metric space is complete.

(e) For x; y 2 R let

d(x; y) =
jx� yj

1 + jx� yj :

Prove that with this metric, the entire space of R is not compact even though it is closed and
bounded.
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(f) A metric space (X; d) is totally bounded if and only if for every real number " > 0, there
exists a �nite collection of open balls in X of radius " whose union contains X. Show that a
complete, totally bounded metric space is compact. Explain why the previous example fails
to satisfy these assumptions.

3 Problems on connectedness

3-1. Basic examples

(a) Show (0; 1) is connected.

(b) Show (0; 2) n f1g is disconnected.
(c) Show that R and R2 are not homeomorphic. Hint: use the notion of a connected set.
(d) Find all the di¤erent topologies, up to homeomorphism, on a 4-element set, which make it a

connected topological space.

(e) Prove that the closure of a connected subspace is connected, but if the closure of a space is
connected the space may not be connected.

3-2. Intermediate Value Theorem.

(a) Prove that if X is connnected and f : X ! Y is continuous then f (X) is connected.

(b) Prove the Intermediate Value Theorem.

(c) Use the Intermediate Value Theorem to prove a special case of Brouwer�s Fixed Point Theorem:
every continuous map f : [�1; 1]! [�1; 1] has a �xed point.
Answer: Consider g (x) = x� f (x) : g (�1) � 0 and g (1) � 0:

3-3. (path connected). A path in X is a continuous map  : [a; b]! X: A space X is path connected if
any two points can be joined by a path.

(a) Show that if X is path connected, then it is connected.

(b) Sow that if f : X ! Y is continuous and X is path connected then f (X) is path connected.

(c) Let X be the union of the origin in R2 and the graph of sin(1=x) on (0;1). Show X is
connected but not path connected.

(d) A space X is called locally path-connected, if for each x 2 X and every neighborhood U of
x, there exists a path-connected neighborhood V of x contained in U . Show that if X is
connected and locally path-connected, then it is path-connected.

(e) Show that every open subset of Rn is locally path connected.
(f) Recall the Cantor set K is de�ned by

K = [0; 1] n
1[
m=1

3m�1�1[
k=0

�
3k + 1

3m
;
3k + 2

3m

�
:

Show that the complement of K �K in the unit square [0; 1]� [0; 1] is path-connected.

3-4. (connected component) Given X, we can de�ne an equivalence relation on X by setting x � y if
there is a connected subset containing both x and y: The equivalence classes are called components
or connected components of X:
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(a) Prove that each connected component of a topological space X is closed.

(b) Show that if A is a both open and closed, non-empty, connected subset of a topological space
X, then A is a connected component.

(c) Show that if a topological space has �nitely many connected components, then each of them
is open and closed.
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